## THE H. B. SMITH COMPANY,

 137 Centre St., New York City. Manufacturers of
## 




FOR HIGH OR LOW PRESSURE

## For IIoating Public Biildining nall Pnivite Rexitancess.

## GOLD \& MILLS BOILERS

With New Improvements for Hard or Soft Coal, arranged for Steam or Water Heating. REED'S IMPROVED CAST-IRON RADIATORS. WHITIIIER'S DIRECT RADIATORS.
GOID'S INNDIEFCI RADIATOZ己S With Flange or Nipple Joints,

> AND

Breckenridge's Pat. Automatic Air Valves.

## " MULTUM IN PARVO."

## Higuy Notes ano Queries.

A MANUAL OF USEFUL INFORMATION,

OF ESPECIAL IMPORTANCE TO DEALERS IN
\&Hardware, \&5toves and fituware
MACHINISTS',

## GAS-FITTERS' AND PLUMBERS' MATERIALS,

AS WELL AS THE VARIOUS WORKERS IN USEEUL METALS.
a NUMBER OF ADDITIONAL PAGES, GIVING $\operatorname{INFORMATION~OF~A~MORE~}$ GENERAL CHARACTER.


[^0]Factories al Poledo, Ohio,


Wholesale Manufacturers of


ALL STYLES AND SIZES OF
 OPEN AND WITH TOP,
Constantly on Hand and Made to Order. BUGBIES
ano PHAETONS,
 HN HEAY CARRALIESS. ALL WORK WARRANTED. Exclusive Sale Given to Agents. Send for Illustrated Catalogues to

# Rasienil Brand hilbun Wagon Company aLBANY, N. Y. 

## INDEX TO ADVERTISERS.

PAGE.
58
ALFORD \& BERKELECO.-Spiral and Screw-Holding Screw-Drivers
158
158
AMERICANBOLT AND SCREW CASECO.-Bolt and Screw Cases ..... 46
AMERICAN MACHINECO.-Cream-Freezers and Ice-Chippers
AMERICAN MACHINECO.-Cream-Freezers and Ice-Chippers ..... 48
AUBURN TACKCO.-Tacks and Small Nails
AUBURN TACKCO.-Tacks and Small Nails ..... 32 ..... 132
BAILEY WRINCING MACHINECO.-Clothes-Wringers
BAILEY WRINCING MACHINECO.-Clothes-Wringers
BERRIDGE, T. \& SON.-Tinners' Shears ..... 38
BRITTON, JOSHUA \& SON.-Henry's Tool-Sets ..... 46
BODLEY, C. E.-Tinners' Reference Book ..... 18
BOSLEY, D. W. \& CO.-Rubber Weather Strips ..... 56
BROWNING, SISUM \& CO.-Belt Hooks, Cotter Keys, etc. ..... 102
BUSHNELL'S PRICE BOOK.-For Hardware Dealers. ..... 23
BRUCE \& COOK.-Metals and Tinners' Supplies ..... 104
CATSKILL "RECORDER."-Printing of all Kiuds ..... 4
CHAPMAN, W. H. \& CO.-Sleigh Bells and Specialties. ..... 88
CHICACO SPRING BUTTCO.-Spring Butts. ..... 88
CINCINNATI CORRUCATINGCO.-Iron Roofing ..... 36
CHIEFTAIN HAY RAKECO.-Agricultural Specialties ..... 74
COMMON SENSE MFC.CO.-Burglar Alarm ..... 6
COXHEAD, J. F.-Saw, Vises and Sets. ..... 116
CURTIS \& CO.-Gas and Steam Fittings ..... 34
DIXON CRUCIBLECO.-Lubricating Compounds, etc ..... 44
EDWARD STORM SPRINGCO.-Dumb Waiters ..... 40
EDWARD STORM SPRINCCO.-Cannon's Nail-Sets ..... 116
EMPIRE WRINGERCO.-Clothes-Wringers ..... 18
ELIZABETHPORTSTEAMCORDACE CO.-Cordage and Binder Twine. ..... 54
EUREKA FIRE HOSECO.-Fire and Garden Hose ..... 60
FULLER BROS. \& CO.-Cut Nails and Spikes ..... 50
CRAHAM, J. H. \& CO.-Manufacturers' Agents ..... 84
CLEASON \& ALLEN.-Eagle Washer-Cutters ..... 6
CEICER \& BUSH.-Copper Kettles. ..... 112
CEICER, J.-Kettle Stand ..... 112
CEORCE GRIFFITHS COMPANY.-Shovels, Spades and Scoops ..... 68
GRIFFING, H. B.-Agricultural Implements. ..... 154
CRICCS, A. I.-Daisy and Favorite Stove Boards. ..... 110
CILBERT \& BENNETT MFC.CO.-Poultry Netting and Wire Cloth ..... 8
CURNEY HOT-WATER HEATER CO.-Gurney Heaters ..... 34
CUYON, C.F. \& CO.-Manufacturers' Agents ..... 74
HAMMOND, B.--"Slug Shot" and Cottage Colors ..... 44
HARDER, MINARD.-Threshing Machines ..... 18
HOLBROOK BROTHERS.-Window Glass. ..... 144 ..... 20HOPKINS, HENRY.-Hardware.
IRON-CLAD MFC, CO.-Galvanized Iron Goods. ..... 132
IVES, HOBART B. \& CO.-Patent Sash Locks. ..... 120
JAYNE \& CROSBY.-"New Departure" Wardrobe Hooks. ..... 50

The Publishers having made every effort to make this Book an acceptable gift to the Dealer to whom it is sent, would be pleased to receive in reply a Postal Card acknowledgment of its having safely arrived.

## THIS VOLTJME

 WAS PRINTED BY THE
## Reconder Privitilig House

## CATSKILL, N. Y.

The contract was obtained in competition with metropolitan printers, both in price and quality of work.

## "By Oir Work Julige Is."

Estimates on any kind of Book or Commercial Printing furnished on application.

## Address

## The Recorder Printing House,

 CATSKILL, N. Y.If you wish to receive Bottom Prices when writing to Advertisers for Catalogues, just mention having seen the advertisement in Hopkins' Handy Notes and Queries.

## INDEX TO ADVERTISERS-Continued.

PAGE
JENNINCS, C. E. \& CO.-Chisels and Auger Dits in Boxes ..... 100
JOHNSTON, H. M.-Standard Kalsomine. ..... 82
JONES OF BINGHAMTON.-Hay, Platform and Counter Scales. ..... 148
JONES, JESSE \& CO. -Wood Shelf Boxes for Hardware. ..... 26
KAMPFE BROS.-"Star" Safety Razors. ..... 54
KNIGHT'S MECHANICAL DICTIONARY.-For Hardware Dealers ..... 28
KOCH ADJUSTABLE BRACKETCO.-Adjustable Shelf Brackets ..... 148
LADD, WIL\&IAM J.-Ladd's Discount Book Cover pp. ..... 4
LANE MANUFACTURINGCO.-Barndoor Hangers and Measuring Faucets. . ..... 64
LEE, JESSE \& SONS.-Horse and Toilet Clippers. ..... 26
LECGETT, C. P. MFC. CO. of New Jersey.-Door Knobs ..... 78
MALTBY, HENLEY \& CO.-Giant Nail-Pullers. ..... 90
MASON, JAMES W. JR.-Skates, Dog Collars, etc. ..... 78
MILBURN WACON CO.-Farm Wagons ..... 2
MONTCOMERY \& CO.-Mechanics' and Jewelers' Supplies ..... 80
MORSE, WILLIAMS \& CO.-Hoists and Elevators ..... 8
MUNSELL, EUCENE \& CO.-Mica ..... 108
NATIONAL HARNESS CO.-Harness and Specialties. ..... 30
NEWYORK ELBOW CO.-Elbows and Empire Roasters ..... 3
NORTHFIELDKNIFECO.-Pocket Cutlery ..... 30
NORTHAMPTON CUTLERYCO.-Table Cutlery, etc ..... 42
NORWICH LOCK MFG.CO.-Locks, Knobs, etc ..... 32
NORWOOD, J.-"Norwood's" Sand Screens ..... 36
PALMER MANUFACTURINGCO.-Brass and Copper Specialties. ..... 114
PARKIN, WM. H.-Emery Knife-Sharpeners. ..... 80
PEASE, J.F.FURNACE CO.-Hot-Air Furnaces ..... 10
QUEEN ANNE SCREEN CO.-Adjustable Window Screens, etc ..... 72
RAYMOND LEAD CO.-Compressed Lead Sash Weights ..... 142
RICHARDSON BROS.-Saws of any Kind ..... 62
ROCERS FENCECO.-"Superior" Lawn-Mowers. ..... 96
ROSS, W. A. \& BRO.-Patent Eye Sash Weights. ..... 142
SARGENT \& CO ..... Facing 96-97
STANLEYRULE AND LEVELCO.-Improved Carpenters' Tools ..... 160
SCHENCK ADJUSTABLE FIRE BACKCO.-Screw Cases ..... 114
SISE, CIBSON \& CO.-" Horse Shoe" and "Horse Hoof" Padlocks ..... 92
SMITH, H. B. CO.-Steam Heating Apparatus ..... 2
SCHOLLHORN, WM. \& CO.-"Star" Scissors and Shears ..... 120
SOMMER'S JOHN, SON.-Cork-Lined and Metal-Key Faucets. ..... 158
TAPSCOTT \& HIBBERD.-Tlnners' Tools and Machines. ..... 108
TRAVERS BROTHERS.-"Peerless" SashfCords and Twines. ..... 70
TRENTONIRONCO.-Iron Wire, Bale Ties, etc. ..... 98
TITUS \& BABCOCK.-Cliff's Bolster Spring ..... 150
VULCANIZED FIBER CO.-Axle-Washers ..... 102
WARREN EHRETCO.-Roofing Materials ..... 82
WESTERN FILECO.-Files of all kinds ..... 66
WESTERVELT, A. B. \& W. T.-Ornamental Iron Works, ..... 146


AWARDED MEDAL ANERICAN INSTITUTE FAIR

## COMMON SENSE BURGLAR ALARM,

an ingenious invention operating as an

## AUTOMATIC WATCHMAN.

No mechanical skill required to adjust it, nor batteries or wires to operate it. It combines

## Simplicity, Durability and Security.

Quick in action and creating a loud and continuous noise. Adapted for use in Dwellings, Offices, Pat. No. 307,058. Stores, Hotels, Boarding Houses, and can be attached to Doors, Windows, Money Drawers, Stables, Henneries, etc. A reliable protection from Burglars, Till-Tappers and Chicken-Thieves. Sample by Mail \$1.50. Liberal Discount to the Trade.

## THE EAGLE WASHER

## -ADVANTAGES.

This Washer Cutter has a shouldered point, which recedes as the knives enter the leather, so that the point does not have to be forced through the leather to cut the washer. In all other Washer Cutters the point is fixed, and if it is made blunt, a great deal of pressure is required to force it into the leather, while if it is made slim to pierce the leather, the disk of leather cut from the inside of the washer is apt to bind between the center point and the knife, requiring considerable force to remove it, and involving much danger of cutting the flngers in doing so. It is only necessary to cut one washer with this cutter to be convinced of its superiority.

Mannafanued ONLY BY

The Following New or Reconstructed Pages are Published for the First Time in the "Near-By" Edition.
INTEREST LAWS AND STATUTES OF LIMITATIONS ..... 29
THE METRIC SYSTEM OF WEICHTS, etc., converted into English. ..... 39
SPECIFIC CRAVITY AND WEICHT of Various Substances ..... 41
ELECTRICAL CONDUCTIVITY, and the Non-Conductivity of Coverings. ..... 43
COMMON NAMES OF VARIOUS CHEMICALS ..... 45
CUT NAILS AND TACKS, also Gauges of Wire Brads. ..... 49
EXTRA PRICES ON CUT NAILS, and Rules for ordering Metals, etc. ..... 51
MANILA CORDACE.-A New Table of Weights, etc. ..... 55
OVAL SLIDE AND SOLID BOX VISES, Boxes and Screws. ..... 57
TABLE OF DECIMAL EOUIVALENTS ..... 59
WEIGHT OF HORSE SHOES AND NAILS, Tire Iron and Steel ..... 61
REGULAR STANDARD SIZES OF FILES ..... 67
WEICHT OF BLOCK-TIN PIPE and Cast-Iron Balls. ..... 71
STANDARD SIZES OF HEADS FOR BOLTS ..... 78
DIFFERENT STANDARDS OF WIRE GAUGE in U.S ..... 81
ROUND AND OVAL-HEAD RIVETS and Shrinkage of Castings ..... 83
TELEGRAPH AND TELEPHONE WIRE.—Sizes, Weight and Strength. ..... 86
LENGTHS AND CAUGES OF STANDARD WIRE NAILS. ..... 89
APPROXIMATE NUMBER OF ..... 91
TABLE OF WIRE HOISTING ROPE.-Sizes, Nos. and Strength. ..... 99
FANNING MILL CLOTH. - Mesh, Gauges and Sizes. ..... 101
WIRE BALE TIES.-Gauges, Sizes and Uses. ..... 103
SHEET COPPER.-Gutter and Boiler and Sheathing Sizes. ..... 121
SEAMLESS BRASS, COPPER AND ZINC TUBINC ..... 118
COPPER TUBING, and Iron-Pipe Sizes ..... 120
SIZES AND COMPARATIVE STRENGTH of IRON COLUMNS ..... 123
EXTRA. PRICES OF BARIRON and Weight of Crowbars ..... 124
BREAKING STRAIN OF VARIOUS MATERIALS ..... 125
HOOP IRON.-Wire Gauge and Weight to foot ..... 125
BOILER RIVETS.-Sizes and Number in Keg ..... 131
GALVANIZED SHEET IRON.-New Computations ..... 133
MACHINE BOLTS AND BOLT ENDS.-Weight of 100 , any size. ..... 136
LAC SCREWS.-Weight of 100 , any size ..... 137
GEOMETRICAL DEFINITIONS ..... 137
BRASS ESCUTCHEON PINS.-Number to a pound ..... 139
WEIGHT AND DIMENSIONS OF N. Y. SASH WEIGHTS ..... 143
QUANTITY OF SLATES IN ANY NUMBER OF SQUARES ..... 149
STANDARD RULES FOR MEASURING SLATE ROOFING ..... 149
WORKSHOP RECIPES.-Various Cements. ..... 153
DIMENSIONS OF VARIOUS MEASURES OF CAPACITY ..... 157
CAPACITY OF CISTERNS, TANKS, etc., and Rales for Measuring ..... 159

## MORSE ELEVATOR WORKS <br> Morse, Williams \& Co.

Manufacturers and Builders of All Kinds of
PASSEMEER AND FREIGFIT
ELEVATORS,
With Most Approved Safety Devices. Antonntic Hatci Dome a spieilly.

Hardware dealers wanted to act as Agents. main office and woris :
Frankford Ave., Wildey and Shackamaxon Sts., PHILADELPHIA. New York Office, 108 Liberty St.


Warehouses: 42 Cliff St., New York. 228 Lake St., Chicago, III. MANUFACTURERS OF

## IRON AND GALVANIZED WIRE

Sieves and Wire Cloth, Power Loom Painted and Galvanized Window Screen Wire Cloth, Galvanized Wire Cloth for Drying Fruits, World's Galvanized Web Wire

Fence, Galvanized Twist Wire Poultry Netting.

## PREFACE.

This Publication has received at all hands a cordial welcome and grateful preservation. The contents represent months of research and solicitation, of patient observation and incessant labor; and although the $\mathbf{B o o k}$ was originally compiled for Personal use, the knowledge that it would be found useful to EVERY dealerin Hardware and Metals, has caused its publication and extended distribution under the advertising patronage of so many Representative Houses.

Its future value can only be assured by making those Advertisers believe that it fills its mission of usefulness, and is kept by the Dealer who receives it, and who, in his quest for information corresponds with its many Advertisers, asking them for Catalogues and quotations; at the same time increasing the value of "Handy Notes and Queries," by stating it was anomg its pages tho advertisement was seen which suggested the application.

The necessity for a Handy Book of Reference similar to this has been manifest for a great many years; and that such a compilation would prove of undoubted utility, has been often experienced by dealers in the various articles to which this work refers.

His no doubt true that many books have been already published, which, singly or collectively, contain nearly all the items of information carefully embodied in this, but most of them are works of limited circulation, not readily obtained, and frequently costing a price that places them beyond the reach of many dealers most apt to need the information.

This work has been compiled from a multitude of sources with a great degree of care, and the information herein contained will be found quite reliable, and from the scarcity of similar publications, should naturally recommend its careful preservation. i.

By comparison with Haswell, Trautwine and other authorfities, these tables will be more easily understood by practical mechanics, and consequently found suscoptible of an immediate simple demonstration without going thre' prescribed forms of computation, natural enough to those whose education has been of a technical character, but thoroughly bewildering to most of us who have "risen from the ranks."

Wherever possible I have refrained from following the " Haswell', method of expressing all sizes by decimal notation; thinking it simpler to say $\mathbf{3 - 1 6}$, instead of $\mathbf{~} 1875 ; \mathbf{5 - 1 6}$, instead of $\mathbf{8 1 2 5}$; dc., the desired information being more easily obtained without the necessity of using mentally an unfamiliar process of reduction:

My principal object has been to be of some service to those following my own business, feeling confident from the assistance I have myself so frequently received, by having these "Handy Notes" within reach will also be appreciated by them. Thus they may oftem save many moments of anxious worry over unexpected problems that may occur in every dav work.

THE CELEBRATED
STHAM ANOMY COMBINAT
SARM ATR H

## 

## IV <br> 

C
Prig

$$
\text { x } 10
$$



STEAM AND WARM AIR COMBINED
 TV） WHRIII
 manufactured solely by



and TORONTO，ONT．


2－PAGE
CATALOGUE ILLUSTRATING AND DESCRIBING 31 STYLES and SIZES

## OF HEATING APPARATUS，MAILED FREE ON APPLICATION．

## CONTENTS.

Page.
ACCEPTANCES.-Rules regarding them. ..... 22
AMERICAN GRADES OF EMERY.-Cloth and Paper ..... 79
ANCHORS.-Size required for ship's tonnage. ..... 53
APOTHECARIES' WEICHT.-Table of ..... 33
ARTESIAN WELL TUBES. -Weight and dimensions of. ..... 135
ATLAS POWDER.-Marks, qualities and how packed. ..... 151
Size of cartridges and weight in ounces. ..... 151
AVOIRDUPOIS WEIGHT.-Table of. ..... 33
AXES, BENCH.-Standard cut of each No. ..... 65
BALE TIES, WIRE.-Uses, sizes, length and gauges ..... 103
BALLS, CAST IRON.-Weight of various sizes ..... 71
BARBED WIRE.-Table of weights and measurements ..... 97
BAR IRON.-Flat, weight to foot ..... 126-127
66 66 Round, weight to foot ..... 128
6 6" Square, weight to foot ..... 129
66 66 Extra prices for each size ..... 124
"، STEEL.-Flat, weight to foot ..... 133
" ${ }^{6}$ Round, Square and Octagon, weight to foot ..... 140
" LEAD. - Weight to foot ..... 134
BILLS OF EXCHANGE explained ..... 22
BLOCKS, TACKLE.-Diameter of sheaves and size of rope taken ..... 57
BOILER TUBES.-Lap welded; weight and dimensions ..... 135
IRON.-Legal thickness required and pressure allowed ..... 131
66 Weight of, to square foot ..... 131
66 RIVETS.-No. in 100 pounds ..... 131
BOLT ENDS.-Weight of 100 ..... 136
HEADS.-Standard sizes of ..... 75
BOLTS, MACHINE. - No. to 100 pounds ..... 136
BOXES.-Capacity of various sizes ..... 157
BRADS, WIRE.-Standard gauges ..... 49
BRASS, BAR AND SHEET.-Weight to foot ..... 115
BRASS WIRE. -Weight of 100 feet ..... 95
، KETTLES. - Weight and capacity of each size. ..... 113
"، TUBING. - Weight per foot ..... 118
" SHEET.-Heavy, weignt to square foot. ..... 115
"، PLATES.-Weight to square foot ..... 117
BRAZED COPPER PIPES.-Weight to foot ..... 118
BRAZIERS' RIVETS.-Number in a pound ..... 113
BREAKING STRAIN upou Various Materials, ..... 125
BUTTS, BRASS. - Width when open and screws required ..... 79
6 CAST.-Screws required for each size ..... 77
"WROUCHT.-Screws required for each size. ..... 77
BUILDERS' REFERENCE TABLE.-Size of sashes, etc ..... 143
BUSINESS LAWS in Daily Use. ..... 19-21
BUTCHER:KNIVES. - Wilson's, length of each No. ..... 69
CAPS, PERCUSSION.-Eley's "E. B." consecutive numbering ..... 69
CAPACITY OF FREIGHT CARS. ..... 138
CAPACITY OF CISTERNS AND TANKS ..... 159
CAPACITY OF VARIOUS BOXES AND MEASURES ..... 157
CAST IRON COLUMNS.-Sizes and limit of strength ..... 123
CASTERS, BED AND PLATE.-Size of wheels ..... 69

## CONTENTS-Continued.

Page.
CEMENT.-To harden quickly ..... 152
45 For leather belting ..... 152
64 For annealing boxes. ..... 153
64 For Gas Retorts. ..... 153
64 For Broken Iron Vessels. ..... 153
66 For Closing Stove Doors. ..... 153
For Filling Faults in Castings ..... 153
CEMENT, RUST.-For Iron ..... 153
FIRE-PROOF ..... 153
CHAINS, COIL.-Weight of Common and Proved to foot. ..... 53 ..... 53
Strength of Tested.
Strength of Tested.
4" CERMAN.-Wire Gauge, weight and strength. ..... 53
CHEMICAL SUBSTANCES expressed by common names ..... 45
CIRCULAR SAWS.-Standard Gauges and directions for ordering. ..... 63
CISTERNS, TANKS, RESERVOIRS.-Capacity of. ..... 159
CISTERNS.-Capacity of in barrels and Rules for measuring ..... 159
CLOTH, WIRE.-Gauge sizes and mesh of screen and mill ..... 101
COLUNINS, CAST:RON.-Sizes and strength ..... 123
COMMON NAMES for Chemical Substances ..... 45
CONDUCTIVITY ELECTRICAL.-Of various substances. ..... 43
COAL SCREENS.-Mesh required by dealers ..... 101
COPARTNERSHIP.-Legal Requirements of. ..... 22
COPPER, BAR AND SHEET.-Weight to foot. ..... 115
COPPER, SHEET.-Gutter and Boiler, Standard sizes and weight ..... 111
Standard sizes and weight of each sheet ..... 111
64 ..... 111
PLATES. - Weight to square foot ..... 117

* SHEATHING.-Weight per sheet and number to case ..... 124
"، RIVETS AND BURS.-Methods of putting up. ..... 51
6 Number of each size in pound ..... 113
$6 \leqslant$ WIRE. -Weight to 100 feet ..... 95
66 PIPES.-Weight to foot ..... 118
"6 TUBING.-Weight to foot. ..... 118
، PIPE SIZE.-Weight to foot ..... 119
COPPERS, SOLDERING.-Standard sizes and shapes ..... 51
CORDACE.-Number of pounds to the foot ..... 55
Approximate weight and strength ..... 55
CORUNDUM.-Grades of fineness of each number ..... 79
COTTERS, SPRING.-Sizes, dimensions and uses of each ..... 103
CROSS TIES.-Number required to mile of track ..... 138
CROWBARS. - Weight and dimensions of each size. ..... 65
CUBIC MEASURE.-Table of ..... 35
CUT NAILS.-Length and number of each in pound ..... 49
6، Extra cost of special sizes. ..... 51
" SPIKES.-Number of each in a keg. ..... 52
" TACKS.-Length and number of each in pound ..... 49
CYLINDRICAL VESSELS.-Capacity of various sizes. ..... 157
DECIMAL EQUIVALENTS.-For parts of an inch. ..... 59
6، "4 For parts of millimeters ..... 59
DRAFTS AND ACCEPTANCES.-Rules regarding them ..... 23
DRAIN PIPE.-Practical rules for laying ..... 152
DRAWN TUBING.-Seamless, weight to foot ..... 118
Page.
DRY MEASURE.-Table of. ..... 35
EFFECTS OF HEAT ON VARIOUS METALS ..... 141
EMERY.-Grade of fineness of each number ..... 79
" PAPER AND CLOT.H.-Comparative grading. ..... 79
ESCUTCHEON PINS, BRASS. - Number to pound. ..... 139
EXCHANGE, FOREIGN.-Value of explained. ..... 23
EXTRA PRICES for Cut Nails and Spikes. ..... 51
، 6 6 Wire ..... 87
6 special sizes of Bar Iron ..... 124
FENCE POSTS. -How to prepare ..... 152
FENCE WIRE, BARBED.-Weight and dimensions of ..... 97
FILES.-Standard length, width and thickness. ..... 67
FREICHT CARS.-Capacity of. ..... 138
FUSE, SAFETY.-Qualities and quantities ..... 151
Quantity usually packed in a barrel ..... 151
CAS PIPE, WELDED.-Weight and dimensions of. ..... 135
CALVANIZED SHEET IRON.-Weight to square foot, etc. ..... 133
GAUCES, WIRE.-Brown \& Sharp's ..... 81
،6 ،6 Birmingham or Stubs' ..... 81
" 66 Washburn \& Moen's ..... 81
" 6 Trenton Iron Co's. ..... 81
46 "، G. W. Prentiss's ..... 81
6 6 " "Old English " from Brass Mfrs.' List ..... 81
64
64 STUBS', expressed in parts of an inch ..... 101
CEOMETRICAL DEFINITIONS ..... 137
CERMAN COIL CHAIN. - Wire Gauge, strength and weight to 100 feet. ..... 53
GLASS, WINDOW.-Number of panes in a box ..... 145
CRINDSTONES. - How to obtain the weight of ..... 45
CUN CAUCE, ENGLISH.-Expressed in fractions of an inch ..... 69
HARD SOLDERS and process for making ..... 109
HATCHETS.-Standard length of cut of each No. ..... 65
HATTERS' SIZES.-Table of ..... 69
HEADS FOR IRON BOLTS.-Standard sizes of. ..... 75
HINCES, STRAP AND T.-Sizes of screws required. ..... 77
Weight of dozen, of heavy sizes ..... 77
HOOP IRON.-Number of feet in bundle ..... 125
Wire Gauges and weight to foot ..... 125
HORSE SHOES.-Weight of each size ..... 61
* SHOE NAILS.-Length and number in a pound of each size. ..... 61
INCOME FROM INVESTMENTS at various costs ..... 25
INTEREST.-Simple method of calculating ..... 27
6 Periods of time at which money doubles. ..... 27
"، LAWS throughout the United States. ..... 29
" RULES for various percentages ..... 25
IRON PIPE.-Sizes and weights. ..... 119
IRON, BAND.-Number of feet in bundle ..... 129
BAR.-List of extras for the various sizes ..... 124
64 BOILER.-Weight to square foot ..... 131
66 Legal thickness and pressure required. ..... 131
66
66 FLAT.-Weight to running foot ..... 126-127
6
6 " Number of feet in a bundle ..... 128
65 ROUND. - Weight to running foot. ..... 128


## CONTENTS-Continued.

Page.
IRON, SQUARE.-Weight to running foot. ..... $12 \theta$
HOOP AND SCROLL.-Number of feet in bundle. ..... 125
© ROUND AND SQUARE.- ..... 129 ..... 138
RAILS.-Amount required for mile of track.
66 ..... 130
SHEET AND PLATE.-Weight to square foot ..... 140
66 6 Wire Gauge and number compared. ..... 140
64 AMERICAN.-Wire Gauge, weight and size in curront use ..... 140
46 CALVANIZED. -Weight per sheet and square foot ..... 133
66 6 Price per square foot at.various discounts ..... 133
TIRE, IN SETS.-Number of pounds in 54 feet ..... 61
VALUE TO TON, at 10ths of a cent variation. ..... 123
WIRE.-Gauge, Diameter and Breaking Strain ..... 85
64 Length in a bundle and 1 cwt. ..... 85
46 Weight of 100 yards and 1 mile. ..... 85
*6 Sizes expressed in fractions of an inch ..... 85
46 " decimals " " " ..... 101
KETTLES, BRASS.-Weight and capacity of. ..... 113
LAG, OR WOOD SCREWS. - Weight of 100 each size ..... 137
LAP-WELDED TUBES.-Sizes and dimensions of. ..... 135
LAWS, BUSINESS.-In every-day use. ..... 19-21
LEAD PIPE.-Standard weights of. ..... 121
ss SHEET.-Weights to square foot. ..... 134
" BAR.-Weights to lineal foot ..... 134
LICHTNING ROD TUBES. - Weight of Copper and Zinc to foot ..... 118
LINEAL OR SURVEYORS' MEASURE.-Table of. ..... 33
LIQUID MEASURE.-Table of. ..... 35
LIST OF STANDARD THREADS on Bolts and Nuts ..... 71
LONG MEASURE, 一Table of. ..... 33
MACHINE BOLTS.-Number in 100 lbs ..... 136
MANDRELS, CIRCULAR SAW.-Standard sizes. ..... 63
MATHEMATICAL RULES.-Some useful ones ..... 122
MEASURES OF CAPACITY.-Table of dimensions of. ..... 157
METALS.-Rules for computing the weights of ..... 122
s6 Weight of, per cubic inch and foot ..... 41
6 Relative malleability of ..... 94
s6 "، gravity of ..... 94
ss AND ALLOYS.-Specific gravity and weight of ..... 41
METRIC (MICROMETER) CALIPER.-Decimal equivalents for its use ..... 59
METRIC SYSTEM converted to English Standards ..... 39
of Weights and Measures ..... 37
MILL SAWS.-Standard gauges in inches ..... 63
MOLASSES GATES.-Diameter and bore of each No. ..... 69
NAILS, CUT.-Derivation of word "Penny". ..... 49
Number of each to pound or keg. ..... 49
© 6 Prices of all extras above 10d. rate. ..... 51
HORSE SHOE.-Standard length and number in each pound ..... 61
WIRE.-Approximate number in pound ..... 93
s 6 Differences in prices above standard ..... 87
6 Standard, dimensions of each size ..... 89
56 Standard gauges, No. and length ..... 89
46 AND.SPIKES.-Length and number of each in a pound ..... 89

## CONTENTS-Continued.

Page.
NON-CONDUCTIVITY of Various Coverings for Steam use ..... 43
NUTS, WROUGHT.-Dimensions of all regular sizes ..... 73
Number of each size in keg ..... 73
OIL WELL CASINC.-Standard sizess and weight ..... 135
OVAL SLIDE VISES.-Size of screws, weight and length of jaws ..... 57
PICKS, R. R. AND MINING.-Standard weights of ..... 65
PIPE, BLOCK TIN.-Standard weights of ..... 71
LEAD, AND TIN-LINED.-Standard weights of ..... 121
CAS, WELDED.-Weight and dimensions of ..... 135
PLANTS AND TREES. - Number to acre placed at stated distances. ..... 155
PLATE IRON.-Weight to square foot ..... 130
PLATES, IRON, STEEL, COPPER, BRASS. - Weight to square foot. ..... 117
TIN.-Wire gauge, weight, name, etc. ..... 105
POISONS AND THEIR ANTIDOTES ..... 24
POWDER, ATLAS.-Marks, qualities, etc ..... 151
SPORTING AND MINING.-Marks and qualities ..... 151
PUTTY.-Recipes to make Painters' and Glaziers' ..... 152
How to soften and remove ..... 152
QUANTITIES.-A table of ..... 33
RAILROAD SPIKES.-Number of each size in 100 lbs. ..... 52
needed to mile of track ..... 55
RAILS, SPLICES AND BOLTS.-Required per mile of track. ..... 138
RECIPES FOR MAKING SOLDERS ..... 109
V VARIOUS CEMENTS ..... 153
RIVETS AND BURS, COPPER. - Number of each in a pound. ..... 113
" BOILER, "BURDENS.'"-Number of each size in a keg ..... 131
ROUND OR OVAL HEAD.-Number in a pound ..... 83
RODS, STEEL, "STUBS." - Nos. expressed in divisions of an inch ..... 101
ROOFINC SLATE.- Size of and number to a square ..... 147
TIN.-Cost of, with $14 \times 20$ tin ..... 106
"، "، "، "، $620 \times 28$ " ..... 107
ROPE; MANILA. - Weight per 100 fathoms. ..... 55
:" " " " of Tarred and Hawser laid. ..... 65
© Breaking strength of each size ..... 55
"
" Number of feet to a pound of each size ..... 55
"
" WIRE.-Diameter, circumference, weight, etc. ..... 99
RULES TO BE OBSERVED.-In ordering Metal or Wire ..... 51
46
46 In computing Slates for Roofing ..... 149
$64 \quad 64$ 64 In ordering Circular Saws ..... 63
" " " " In laying Drain Pipe ..... 152
4464 In tempering Steel. ..... 141
" FOR COMPUTINC WEIGHT of Metals ..... 122
" " OBTAININC ..... 45
TO CALCULATE ANY PERCENTAGE of Interest ..... 25
RUST CEMENT for Iron ..... 153
RUSSIA SHEET IRON.-Wire gauge, number and weight to sheet ..... 140
RUSTY BOLTS.-How to remove easily ..... 152
SAFETY FUSE.-Qualities and burning periods ..... 151
Quantity packed in ench barrel ..... 151
SASH.-Sizes and dimensions of ..... 143
SAWS, CIRCULAR AND MILL.-Standard gauges of each ..... 63
Directions for ordering ..... 63

## CONTENTS-Continued.

Page.
SASH WEIGHTS.-Length and thickness of each size ..... 143
SCREENS, COAL.-Size of mesh required ..... 101
SCREWS, LAC.OR WOOD.-Weight of 100 each size ..... 137
SCREW THREADS.-Standard, for Nuts, etc ..... 71
SCROLL IRON.-Number of feet in a bundle ..... 125
SEED.-Quantity usually sown to an acre ..... 156
"، " required for given number of plants. ..... 156
SHEET IRON. - Weight to square foot. ..... 130
Nos. and weights in common use ..... 140
" CALVANIZED.-Price at list and discountéd. ..... 133
" ZINC.-Weight to sheet and square foot ..... 134
COPPER. - Weight per square foot, and thickness by Eng. gauge. ..... 111
66 f each sheet. ..... 111
"6 "، AND BRASS.-Heavy, weight in pounds ..... 115
LEAD ..... 134
SHOT, DROP AND BUCK.-Standard sizes and number in an ounce ..... 121
SHRINKAGE OF CASTINGS.-Rules for pattern-makers ..... 83
SKATES.-Sizes in inches compared with Shoe sizes ..... 69
SLATEROOFING.-Standard rule for measuring ..... 149
" " Table showing No. of slate in any No. of squares ..... 149
"، 6، Weight to square and cubic foot. ..... 147
SOLID BOX VISES. - Length of jaws of each size ..... 57
Sizes of boxes and screws ..... 57
SOLDERS, HARD AND SOFT.-Recipes for making ..... 109
SOME THINGS THAT ARE MISNAMED ..... 47
SPIKES, CUT.-Number of each size in a leg. ..... 52
"* RAILROAD, BOAT AND SHIP.-Number of each size in a keg. ..... 52
6 6
6 6 Number needed to mile of track ..... 55
6 Sizes used to various weights of rail. ..... 55
SPECIFIC GRAVITY and Weightlof Metals and Alloys. ..... 41
SQUARE MEASURE.-Table of. ..... 35
STATUTES OF LIMITATION for Debt in U. S ..... 29
STEEL, BAR.-Round, Square and Octagon, weight to foot ..... 140
" FLAT.-Weight to foot ..... 139
" PLATES. - Weight to square foot ..... 117
" WIRE.-Weight to 100 feet ..... 95
" " RODS.-Nos. expressed in parts of an inch ..... 101
STEEL CROWBARS. - Weight and dimensions of ..... 124
STRAP AND T HINGES.-Weight of heavy sizes to dozen ..... 77 ..... 77
SURVEYINC (LINEAL) MEASURE.-Table of. ..... 33
TACKLE BLOCKS.-Size of sheaves and rope required for each. ..... 57
TACKS, CUT.-No. of each size in pound. ..... 49
TANKS AND RESERVOIRS.-Capacity of. ..... 159
TAPER AND PLUC TAPS.-No. of threads to inch ..... 73TENSILE STRENGTHfand Resistance of Metals.
94
THREADS, STANDARD.-List of, for Bolts and Nuts ..... 71
TIN-LINED PIPES.-Standard size of. ..... 121
TIN PLATES.-Standard kinds and sizes ..... 105
Weight, wire gauge, and No. of sheets in a box ..... 105
" ROOFING.-Cost per square, at various rates per box ..... 106-107
TIRE IRON.-Weight per set of each size. ..... 61

## CONTENTS-Continued.

## Page.

TIRE STEEL.-Weight per set of each size ..... 61
TEMPERING STEEL.-Rules to be observed. ..... 141
TREES AND PLANTS.-No. to acre at stated distances. ..... 155
TROY WEIGHT.-Table of ..... 33
TUBES, BOILER. - Weight and dimensions of ..... 135
ARTESIAN WELL.-Weight and dimensions of. ..... 135
TUBING, BRASS, COPPER AND ZINC.-Weight to foot ..... 118
COPPER.-Pipe sizes, weight to foot. ..... 119
USEFUL MATHEMATICAL RULES ..... 122
USE OF WIRE in Telegraph Service. ..... 86
VALUE OF IRON to the Ton at a given price per pound. ..... 123
BY THE PIECE of Articles at a given price per dozen ..... 31
VISES, OVAL SLIDE.-Weight, size of screws and length of jaws. ..... 57
SOLID BOX.-Sizes of boxes and screws. ..... 57
Weight and length of jaws ..... 57
WASHERS.-Standard sizes and No. of each in a keg. ..... 75
WEICHTS AND MEASURES.-Complete Tables of. ..... 33-35
66 The Metric System of ..... 37
WEIGHTS, SASH. -Length and thickness of each size.39
WEIGHT TO. ACUBIC FOOT of various Metals and Alloys.143
WEIGHTS TO BUSHEL, Customary and Legal ..... 155
WINDOW GLASS. - No. of panes in a box of each size. ..... 145
WILSON'S BUTCHER KNIVES.-Length of each No. ..... 69
WIND.-Velocity and force of. ..... 156
WIRE, BARBED FENCE.-Weight and measurement of ..... 97
WIRE BRADS.-Standarả Length and Gauge. ..... 49
WIRE FENCE.-Number of wires and distances between posts. ..... 97
4 BRASS. - Weight to 100 feet, in pounds ..... 95
4 COPPER. ..... 95
" PRON. 6 " 6 " " 6 ..... 95
" STEEL. ..... 95
WIRE BALE TIES.-Uses, sizes, length and gauges ..... 103
4 CLOTH.-Sizes and mesh of Screen and Mill. ..... 101
4 GAUCES.-Different Standards in the United States. ..... 81
"HOISTINCROPE.-Diameter, circumference, weight, etc. ..... 99
WIRE NAILS.-Approximate number of Regular in a pound ..... 93
446 " Standard " ..... 91
4 4 Extra prices for various sizes ..... 87

* " Length of each Standard size and kind ..... 89
* " AND SPIKES.-Size, length and number of each in pound. ..... 89
46
46 IRON.-Size, weight, length and strength ..... 85
64 Sizes by wire gauge, expressed in decimals of an inch ..... 101
" TELEGRAPH AND TELEPHONE.-Weight, resistance, strength. ..... 86
" ROPE.-Trade Nos., diameter, circumference, weight, etc ..... 99
WIRES OF VARIOUS METALS.-Tensile strength and resistance ..... 94
WORKSHOP RECIPES of convenience and utility ..... 152
Various kinds of Cement. ..... 153
WROUGHT BOAT AND SHIP SPIKES.-Number in 150 pounds. ..... 52
WRENCHES, "COE'S."-Size of Nut taken by each length. ..... 65
ZINC, SHEET.-Wire gauge, number and weight to sheet. ..... 134
TUBING.-Weight per foot ..... 118


## POCEETE REWERENCE BOOE

## For Tinners and Sheet Metal Workers.

A comprehensive collection of practical information including rules, tables, receipts, explanations, etc.. presented in a compact form and easily carried in the pocket. A Cyclopedia of Information covering everything in daily use by the Tinner. First comes a table for cutting out tinware made on the plan of a frustum of a cone ; table of size and weight of flat-top cans; dimensions of measures; cost of tin roofing per square; number of slate in any number of squares; soldering and soldering fluxes; net cost of galvanized sheet iron; sheet iron of various kinds, sheet brass, copper, zinc; weight of lead pipe, copper, brass and zinc tubing; circumferences and areas of circles; receipts, and a great deal of other information. Proprietors, procure it for your workmen. Workmen, send for it. Satisfaction guaranteed. Manila covers, 35 cts.; cloth, 50 cts., to any address, prepaid. Address

> C. E. BODLEY, Creston, Union Co., Iowa.


# EPMPPIRE <br>  

Save Much More Labor and are More Durable than Others.

> Also "Volunteer" Wringers, "Daisy" Iron-frame Wringers, Bench Wringers, Foiding Cot Beds, Folding Wash Benches, Folding Clothes Dryers, Hammock Standards. Swings, etc.

CATALOGUE FREE. Finapire VVrimger Co., Autouria, IV. T.


The Only machine that received an award on both Horse-power and Thresher and Cleaner, at the Centennial Exhibition; was swarded the two last Cold Medals given by the New York State Agricultural Society on Horse-powers and Threshers ; and is the Only Thresher selected from the vast number built in the United States, for illustration and description in "Appleton's Cyclopedfs of Applied Mechanics," recently published, thus adopting it as the standard machine of this country. Buy the best. It is cheapest in the end. Catalogue sent free. Address, MINALD IIARDER, Cobleskill, Schobarie Co., N. Y.

## HOPKINS' HANDY NOTES AND QUERIES.

## BUSINESS LAW IN DAILY USE.

The following compilation of business law contains the essence of a large amount of legal verbage :

If a note is lost or stolen, it does not release the maker; he must pay it, if the consideration for which it was given and the amount can be proven.

Notes bear interest only when so stated.
Principals are responsible for the acts of their agents.
Each individual in a partnership is responsible for the whole rmount cf the debts of the firm, except in cases of special partnership.

Ignorance of the law excuses no one.
The law compels no one to do impossibilities.
An agreement without consideration is void.
A note made on Sunday is void.
Contracts made on Sunday cannot be enforced.
A note by a minor is void.
A contract made with a minor is void.
A contract made with a lunatic is void.
A note obtained by fraud, or from a person in a state of intoxication, cannot be collected.

It is a fraud to conceal a fraud.
Signatures made with a lead pencil are good in law.
A receipt for money is not always conclusive.
The acts of one partner bind all the rest.
"Value received" $i$ s usually written in a note, and should be, but is not necessary. If not written it is presumed by the law, or may be supplied by proof.

The maker of an "accommodation" bill or note (one for which he has received no consideration, having lent his name or credit for the accommodation of the holder) is not bound to the pers n accommodated, but is bound to all other parties, precisely as if there was a good consideration.

No consideration is sufficient in law if it be illegal in its nature.

Checks or Craf's must be presented for payment without unreasonable delay.

Checks or drafts should be presented during business hours, but in this country, except in the case of banks, the time extends through the day and evening.

If the drawee of a check or draft has changed his residence, the holder must use due or reasonable diligence to find him.

If one who holds a check as payee or otherwise, transfers it to another, he has a right to insist that the check be presented that day, or, at farthest, on the following day.

A note indorsed in blank (the name of the indorser only written) is transferable by delivery, the same as if made payable to bearer.

If the time of payment of a nute is not inserted, it is held payable on demand.

# Henry Hopkins， <br> P．O．Box 1219， 

REPRESENTING

## G． $\operatorname{Fo}$ GUYDN \＆CDo，

Sole Agents for Middle and Southern States for

NASHUA LOCK CO．，
Builders＇Hardware， NASHUA， N．H．

LOCKWOOD MFG．CO．，
Locks，Knobs，Etc．，
SOUTH NORWALK， CONN．

DIBBLE MFG．CO．，
＂Hemacite＂Knobs，
TRENTON，
N．J．
N．E．BUTT CO．， PROVIDENCE， R．I．

W．HIGHTON \＆SON，
Registers and Ventilators， BOSTON，

MASS．
H．B．IVES \＆CO．，
Door Bolts and Sash Locks， NEW HAVEN， CONN．

C．J．KIMBALL \＆SON， Shoe，Bread and Factory Knives， BENNINGTON， N．H．

Wooirough \＆Clemson， Saws of All Kinds， MONTVALE， MASS．

A．G．PECK \＆CO．， Axes and Edge Tools， COHOES， N．Y．

Henry Chency Hammer Co． Solid C．S．Hammers， LITTLE FALLS， N．Y．

ARCADE FILE WORKS， Files and Rasps， SING SING， N．Y．

ELWELL \＆DOTY， Knobs， CLEVELAND， OHIO．

Coryell Flint Paper Co．， WILLIAMSPORT， PA．

SOUTHWARK SCALE CO．
Tea，Counter and Union Scales， PHILADELPHIA， PA．

NOS． 97 AND 99 READE STREETS，

## BUSINESS LAW IN DAILY USE.----Continued.

The time of payment of a note must not depend upon a contingency. The promise must be absolute.

A bill may be written upon any paper, or substitute for it, either with ink or pencil.

The payee should be distinctly named in the note, unless it is payable to bearer.

An indorsee has a right of action against all whose names were on the bill when he received it.

If the letter containing a protest of non-payment be put into the post office, any miscarriage does not affect the party giving notice.
-
Notice of protest may be sent either to the place of business or of residence of the party notified.

The holder of a note may give notice of protest either to all the previous indorsers or only to one of them; in case of the latter he must select the last indorser, and the last must give notice to the last before him, and so on. Each indorser must send notice the same day or the day following. Neither Sunday or legal holiday is to be counted in reckoning the time in which notice is to be given.

The loss of a bill or note is not sufficient excuse for not giving notice of protest.

If two or more persons as partners are jointly liable on a note or bill, due notice to one of them is sufficient.

If a note or bill is transfered as security, or even as payment of a pre-existing debt, the debt revives if the bill or note be dishonored.

An indorsement may be written on the face or back.
An indorser may prevent his own liability to be sued by writing " without recourse," or similar words.

All claims which do not rest upon a seal or judgment must be sued within six years from the time when they arise.

Part payment of a debt which has passed the time of statutory limitation revives the whole debt, and the claim holds good for another period of six years from the date of such partial payment.

A verbal promise to pay, made without condition, is generally held as sufficient to revive a claim otherwise shut out by the law of limitation.

If, when a debt is due, the debtor is out of the State, the "six years" do not begin to run until he returns. If he afterward leave the State, the time forward counts the same as if ho remained in the State.

An oral agceement must be proved liy evidence. A written agreement proves itself. The law prefers written to oral evidence because of its precision.
No evidence may be introduced to contradict or vary a written contract; but it may be received in order to explain it, when such contract is in need of explanation.

## Bills of Exchange, Drafts, Acceptances.

A BIIl of Exchange or Draft is an order drawn by one person or firm upon another, payable elther at sight or at a stated future time.
It becomes an "Acceptance" when the party upon whom it is drawn writes across the face "Accepted," and signs his name thereto, and is negotiable and bank•ble the same as a note, and subject to the same laws.
In many States both Sight and Time drafts are entitled to three days grace, the same as notes; but if made in form of a bank check, 'pay to," without the words "at sight," it is payable on presentation without grace.
Demand Notes are payable in presentation without grace, and bear legal interest, after a d $\epsilon$ mand has been made, if not so written. An endorser on a demand note is holden only for a limited time, variable in different States.
A Negotiable Note must be made payable either to bearer, or be properly endorsed by the person to whose order it is made. If the endorser wishes to avoid responsibility, he can endorse " without recourse."
A Joint Note is one signed by two or more persons, who each become liable for the whole amount.
Three Days' Grace are allowed on all time notes, after the time for payment expires; if not then paid, the endorser, if any, should be lega!ly notified, to be holden.

## Foreign Exchange, Value of U. S. Coins, etc.

The value of One Pound Sterling or an English Sovercign, compared with old U. S. coins, is $\$ 4.444$, but Congress has, from time to time, reduced the weight and purity of U.S. coins, making their value as metals less than their value as coins, and bas cstablished the present legal value of a Pound Sterling at $\$ 4.84$. Exchange is based on the old or nominal value of a Pound, so that when exchange is said to be at 9 per cent. premium. it is then at par value; when below 9 per cent., it is below par; and when above 9 der cent., above par, etc.

## Copartnerships.

Partnerships may be either general or special. In generai partnerships, money invested ceases to be individual property. Each member is made personally liable for the whole amount of debts incurred by the company. The company is liable for all contracts or obligations made by individual members.
Special Partners are not liable beyond the amount contributed.
A person may become a partner by allowing people generally to presume that he is one, as, by having his name on the sign, or parcels, or in the bills used in the business.
A share or specific interest in the profits or loss of a business, as remuneration for labor, may involve one in the liability of a partner.
In case of Bankruptcy, the joint estate is first applied to the payment of partnership debts, the surplus only going to the creditors of the individual estate.
A Dissolution of partnership may take place under express stipulations in the articles of agreement, by mutual consert., by the death or insanity of one of the firm, by award of arbitrators, or by court of equity in cases of misconduct of some member of the firm
A partuer signing his individual name to negotiable paper, which is for the use of the parinership firm, binds all the partners thereby. Nogotiable paper of the firm, even though given on private accuunt by one of the partners, will hold all' the partners of the firm when it passes into the hands of holders who are ignorant of the fact attending its creation.
Partnership effect 3 may be bought and sold by a partner ; he may make contracts; inay receive money ; endorse, draw, and accept bills and notes; and while this may be for his own private account, if it apparently be for the use of the firm, his partners will be bound by his action, provided the parties dealing with him were ignorant of the transaction being on his private account; and thus representation or misrepresentation of a partuer, having relation to business of the firm, will bind the members in the partnership.

In case of Death, the surviving partners must account to the representatives of the deceased.

## PEREECTION．

## BUSHNELL＇S PRICE BOOK，

For the Convenience of Business Men in all Lines of Trrade．

## BUT ESPECIALLY THE HARDWARE TRADE．

This book was not offered to the public until October，1883，but thousands who are now using it can testify to its usefulness．

## ーフエエAT IT IS：



BUSHNELL＇S PRICE BOOK is a neat，substantially bound book of 200 pages，made of first－class stock，con－ veniently and tastefully indexed，handsomely ruled and headed．It is manufactured for the publisher by one of the best blank－book manufacturers in New York，and no expense has been spared to make it the finest book in the market，the neatness and convenience of which will com－ mend it at once．

There is no other price book in the mareet，sold at anything like an equal figure，that compares with it． It was developed by years of experience in business，and the need of a practical price book was the means of bring－ ing this before the public．

To the business man who never kept a price book，a few weeks＇trial of it will demonstrate its advantages，and he will never dispense with it．

No business，great or small，can afford to do without it．
With one of them at his service，a minute＇s work with the pencil，on the arrival of new goods，records the cost of them in a convenient shape for almost instantaneous reference at any future time－no matter how far distant．

The advantages of this when purchasing or selling goods are self－evident． At the same time your selling price is recorded for convenient reference；and you thus have the cost and price of your entire stock in a book which may be carried in the pocket or kept on the desk．

In time saved from searching for old invoices，in money saved in buying and in the preservation of prices of goods from which the marks have been torn or obliterated，the book will pay for itself many times the first month it is used．

Jobbing houses will find it admirably adapted to the pocket of the Iraveling Man，for Salesmen at home，or for Office Use．

REDUCED PRICES FOR 1888：
（Including as a premium，a copy of＂Handy Notes and Queries．＂）

No．1，Cloth．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．per copy，$\$ 120$
No．2，Seal Morocco．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．per copy， 160
No．3，Red Russia ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．per copy， 200
Please remit by Draft，Money Order，or Postal Note．If preferred responsible parties may order and remit on receipt of the books．
SENT POSTPAID，ON RECEIPT OF PRICE，BY
HENRY HOPKINS \＆CO．，
99 Reade Street，
New York．

## Poisons and their Antidotes.

Arsenic.-Use the stomach pump instantly; otherwise, give 20 grains sulphate of zinc in a little warm water to produce vomiting, or a large table spoonful of mastard in warm water. Meanwhile-procure some hydrated sesquioxide of iron and give a tablespoonful of it with water every five or ten minates until six doses are taken. Dialyzed iron is also efficient.
Aqua Ammonia, or Hartshorn, if taken undiluted is a violent poison. Give Vinegar, instantly, mixed with a little water, this acts by nentralization. Vegetable oils, in large quantity, furnish the next best antidote, the ammonia acting apon them to form Soap.
Aconite.-Give an emetic of mustard or sulphate of zinc, or use the stomach pump, instantly, then give stimulants, whiskey, brandy, gin or rum, \&c.

Acid-Nitric, Muriatic, or Sulphuric.-If either of these be swallowed, not a moment is to be lost. . The best remedy is to fill the patient rewl of Calcinsd Magnesia stirred up in water, to the consistency of very thin paste; or, give half an ounce of soap shavings in a pint of water. If neither are at hand give chalk or whiting, in water, or even pound fine some of the white plastering from the wall and give in water.
Belladonna, Hyoscyamus, Stamonium, and Conium are all narcotics, and the treatment is the same as for opium; especially the strong coffee.
Cantharides (Spanish Flies).-Give large doses of sweet oil, sugar and water, or milk. To relieve the strangury and scalding of urine whice it occasions, give camphor, 10 to 15 drop doses in water.
Corrosive Sublimate, (Bed bag poison). -Mix up quickly the whites of a dozen eggs, with a quart of cold water, give a cupful of the mixture every two minutes till the stomach can hold no more. If you have not eggs enough use what you have and make up the deficiency with milk. Wheat flour, mixed with water, is good. Use the stomach pump if it can be had quickly.
Charcoal Gas, Sulphuretted Hydrogen, or Carbonic Acid Gas.Use cold shower bath and give Aconite in drop doses, in a spoonful of water. The effects of Coal gas are best antidoted by copious draughts of vinegar and water.
Oxalic Acid.-Give Magnesia in water as quickly as possible. When not to be had, use chalk, lime or saleratus. Use the stomach pump if at hand. Soap suds or alkalies are of no use with this Acid.
Ofium, Morphine and Laudanum.-Use the stomach pump, if possible; if not, a powerful emetic, as sulphate of zinc; or, give the mustard emetic and tickle the palate. If drowsiness comes on, take the patient into the open air; dash water into the face, by all means keep him walking. If once allowed to fall asleep it may be impossible to arouse him. Strong coffee, taken hot, antidotes after the stomach has been emptied.

Prussic Acrd. -This is the deadliest of all known poisons. One drop of the pure acid will cause instantaneous death. If any of its products be taken and the result is not immediately fatal, resort to the cold shower bath, inhalation of diluted aqua ammonia vapor and give solution of carbonate of potass, 20 grains to a glass of water, or ammonia diluted with six times the bulk of water, freely.
Sugar of Lead, (Acetate of Lead).-Give a ground mustard emetic; or, 20 grains sulphate of zinc in a glass of water; afterwards, large dose of epsom salts.
Strychinine or Nux Vomica, are rapid and deadly poisons, generally proving fatai, in spite of treatment. If emetics are given and the stomach emptied quickly enough, and if the patient is not attacked;with convalsions within two hours, he will generally be safe. An abundance of sweet milk is recommended, also strong coffee, as for opium poisoning.

Strung Lye.-Sometimes swallowed by children. The remedy is vinegar, or oil, the former by converting the lye into acetate of potash, the latter by forming soap; neither of which materially injures the stomach.
Verdigris.-This most frequently poisons by its formation upon copper vessels used in cooking. Give an emetic instantly, and then two teaspoonfuls of Carbonate of Soda, in a tumbler full of water and repeat in ten minutes. Whites of eggs in wates are also proper.


Rate of Annual Income of Investments,
par value being $\$ 100$, bearing interest at

| Price paid. | 5\% | 6\% | 7\% | 8\% | 10\% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \$50 | 10.00 | 12.00 | 14.00 | 16.00 | 20.00 |
| 55 | 9.09 | 10.90 | 12.72 | 14.5\% | 18.18 |
| 60 | 8.33 | 10.00 | 11.66 | 13.33 | 16.66 |
| 65 | 7.69 | 9.23 | 10.76 | 12.30 | 15.38 |
| 70 | 7.14 | 8.57 | 10.00 | 11.42 | 14.28 |
| 75 | 6.66 | 8.00 | 9.33 | 10.66 | 13.35 |
| 80 | 6.25 | 750 | 8.75 | 10.00 | 12.50 |
| $82 \frac{1}{2}$ | 6.06 | 7.27 | 8.48 | 9.69 | 11.12 |
| 85 | 5.88 | 7.05 | 8.23 | 9.41 | 11.76 |
| $87 \frac{1}{2}$ | 5.71 | 6.85 | 8.00 | 9.14 | 11.42 |
| 90 | 5.55 | 6.66 | 7.77 | 8.88 | 11.11 |
| 92 ${ }^{\frac{1}{2}}$ | 5.40 | 6.48 | 7.56 | 8.64 | 10.80 |
| 95. | 5.26 | 6.31 | 7.36 | 8.42 | 1052 |
| 96 | 5.20 | 6.25 | 7.29 | 8.33 | 10.41 |
| 97 | 5.15 | 6.18 | 7.21 | 8.24 | 10.30 |
| $97 \frac{1}{2}$ | 5.12 | 6.15 | 7.17 | 8.20 | 10.25 |
| 98 | 5.10 | 6.12 | 7.14 | 8.16 | 10.20 |
| 99 | 5.05 | 6.06 | 7.07 | 8.08 | 10.10 |
| 100 | 5.00 | 6.00 | 7.00 | 8.00 | 10.00 |
| 101 | 4.95 | 5.94 | 6.93 | 7.92 | 9.90 |
| 102 | 4.90 | 5.88 | 6.86 | 7.84 | 9.80 |
| 103 | 4.85 | 5.82 | 6.79 | 7.76 | 9.70 |
| 104 | 4.80 | 5.76 | 6.73 | 7.69 | 9.61 |
| 105 | 4.76 | 5.71 | 6.66 | 7.61 | 9.52 |
| 110 | 4.54 | 5.45 | 6.36 | 7.27 | 9.09 |
| 115 | 4.34 | 5.21 | 6.08 | 6.95 | 8.69 |
| 120 | 4.16 | 5.00 | 5.83 | 6.66 | 8.33 |
| 12.5 | 4.00 | 4.80 | 5.60 | 6.40 | 8.00 |
| 130 | 3.84 | 4.61 | 5.38 | 6.15 | 7.69 |
| 135 | 3.70 | 4.44 | 5.18 | 592 | 7.40 |
| 140 | 3.57 | 4.28 | 5.00 | 5.71 | 7.14 |
| 145 | 3.44 | 4.13 | 4.82 | 5.51 | 6.89 |
| 150 | 3.33 | 4.00 | 4.66 | 5.33 | 6.66 |

## Interest Rules.

Four Per Cent.-Multiply the principal by the number of days to rnn ; separate the rignt haud figure from product, and divide by 9.

Five Per Cent.-Multiply by number of dayb, and divide by 72
Six Per Cent. - Multipiy by number of days; separate right hand figure, and divide by 6 .
Seven and Three-Tenths Per Cent.-Multiply by number of days, and double the amount so obtained. On $\$ 100$ the interest is just two cenis $\mathrm{p}=\mathrm{r}$ day.

Eight Per Cent.-Multiply by number of days, and divide by $\mathbf{4} 5$.
Nine Per Cent.-Multiply by number of days; separate righe I ? ind figure, and divide by 4.

Ten Per Cent.-Maltiply by number of daye, and divide by 36.
Twelve Per Cent.-Multiply by number of days; separate right hand figure, and divide by 3.


Carefully Examined and Tested.
The superior steel and improved methods of tempering and grinding make the "Star Brand" Clippers Hold their Edge Longer than any others in the market.
LaRGEST varie ty. FINEST qUALITL. LATEST MPROVEMENTS.

## Jesse Lee \& Sons, Sole Agents,

## 37 SOUTH FOURTH ST.,

## 



## SEND FOR CIRCULAR SHOWING WHAT PEOPLE THINK OF THEM, WHO ARE and have been using them for years.



## Simple Method of Calculating Interest.

We take 6 per cent. as basis for calculating all rates.
Multiply the amount by number of days and divide by 6000 ; or, which is the same thing, multiply by number of days, remove the decimal point three figures to the left and divide by 6. This gives the interest at 6 per cent.

| For | 2 | per cent. | take |
| :--- | :--- | :--- | :--- |
| For | 3 | per cent. | one-third. |
| For | 4 | per cent. | deduct |
| one-half. |  |  |  |
| For | 5 | one-third. |  |
| For cent. | 7 | deduct | one-sixth. |
| For cent. | 8 | add | one-sixth. |
| For cent. | add | one-six. | one-third. |
| For | 10 | per cent. | add |
|  |  | one-half. |  |
|  |  | add | two-thirds. |

The following example shows the simplicity : Interest on $\$ 950.40$ for 212 days.


Any rate can be calculated upon the same principle.
Contributed by Jesse Lee and Son, Philadelphia, Pa.
Time at which Money Doubles at Interest.

| Rate per cent. | Simple Interest. | Compound | Interest. |
| :---: | :---: | :---: | :---: |
| 2.............. | .. 50 years.. | 35 years | 1 day. |
| $2 \frac{1}{2}$ | 40 years. | 28 years | 26 days. |
| 3 | . 33 years 4 months. | 23 years | 164 days. |
| $3 \frac{1}{2}$ | . 28 years 208 days. | 20 years | 54 days. |
| 4. | . 25 years. | 17 years | 246 days. |
| $4 \frac{1}{2}$ | . 22 vears 81 days. | 15 years | 273 days. |
| 5 | . 20 years. | 15 years | 75 days. |
| 6. | . 16 years 8 months. | 14 years | 327 days. |
| 7 | 14 years 104 days. | 10 years | 89 days. |
| 8. | . 121 $\frac{1}{2}$ years. | 9 years | 2 days. |
| 9 | 11 years 40 days. | 8 years | 16 days. |
| 10. | . 10 years. | 7 years | 100 days. |

ONE DOLLAR LOANED 100 YEARS at Compound Interest would amount to the following sum:


## A COLOSSAL WORK COMPLETED．

A Book for all Persons who Make，Buy，Sell，Use，or want to know anything about Tools or Machines，or are Curious as to the History and Development of Mechanic Art．

# апIERPRIII MERHM표 DCTIOMPRI 

A descriptive word－book of tools，instruments，machines，chemical and me－ chanical processes；civil，mechanical，railway，hydraulic and military engi－ neering；a history of inventions；general technological vocabulary，and digest of mechanical appliances in science and the industrial and fine arts，by

## EDWARD H．KNIGHT，A．M．，LL．D．，

 Civil and Mechanical Engineer．After many years of active preparation，the work has now been completed， and may be had，by subscription only，in forty－four parts of sixty－four pages each，or in three bound volumes．

## 

Or Bound in Cloth，$\$ 24$ ；Sheep，$\$ 27$ ；Half Morocco，$\$ 30$ ，per Set． A NEW VOIUユ上F NOOTK 卫卫AD工． Knight＇s New Mechanical Dictionary．

A Description of Tools，Instruments，Machines，Processes and Engineering， WITH INDEXICAL REFERENUES TO TECHNICAI，JOURNALS．（1876－1880．） By EDWARD H．KNIGHT，A．M．，LL．D． FROM THE RIVERSIDE PRESS，CAMBRIDGE，MASS． The march of mechanical improvement in seven years that have elapsed since the com－ pletion of Knight＇s American Mechanical Dictionary renders it necessary to issue another volume，to keep the work abreast of the times．The two great exhibitions at Philadelphia and Paris－with each of which the author was officially connected as delegate or commis－ sioner and as a member of the respective juries－have brought forward a world of new mat－ ter；and the records of our own Patent Office，as well as the testimony of our technical journals，bear witness to the fact that at no period has invention been more fertile，more brilliant，or more important．To be complete in 4 sections，of 240 pages each，at $\$ 2$ per section．



#### Abstract

Knight＇s American Mechanical Dictionary，complete in 3 volumes，jaken in connection with Knight＇s Nep Mechanical Dictionary，complete in one volume，forms a complete set of 4 volumes，bringing the record down nearly to date．

The price of either work，Taken Separately，will remain as above，but to subscribers sending us their order for both works conjointly we will furnish same at following prices： Complete Set of Four Volumes，bound in Cloth． \＄27．50 Complete Set of Four Volumes，bound in Sheep．．．．．．．．．．．．．．． 31.50 Complete Set of Four Volumes，bound in Half Morocco：．．．．．．． 36.50


[^1]HENRY HOPKINS \＆CO．， 99 Reade St．，New York．

| STATES AND TERRITORIES. | INTEREST LAWS. |  | STATUTES OF LIMITATIONS. |  |  | STATES AND TBRRITORIES. | INTEREST LAWS. |  | statutes OF LIMITATIONS. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Legal } \\ & \text { rate. } \end{aligned}$ | Rato allow'd by contract. | Judgments, Years. | Notes, Years. | Open acct's Years. |  | Legal rate. | Rate allow'd by contract. | Judgments, Years. | Notes, Years. | Open acct's, Years. |
| Alabama | $\left\|\begin{array}{c} \text { per cent. } \\ 8 \end{array}\right\|$ | $\begin{gathered} \text { per cent. } \\ 8 \end{gathered}$ | 20 | 6 | 3 | Missouri. | per cent. | $\underset{10}{\text { per cent. }}$ | 10 | 10 | 5 |
| Arkansas | 6 | 10 | 10 | 5 | 3 | Montana........... | 10 | Any rate. | 6 | 6 | 2 |
| Arizona | 10 | Any rate. | 4 | 4 | 2 | Nebraska | 7 | 10 | 5 | 5 | 4 |
| California. | 7 | Any rate. | 5 | 4 | 2 | Nevada............. . | 10 | Any rate. | 6 | 6 | 4 |
| Colorado | 10 | 10 | 6 | 6 | 6 | New Hampshire. . . | 6 | 6 | 20 | 6 | 6 |
| Connecticut | 6 | $\dagger$ | 16 | - 16 | 6 | New Jersey. . . . . . . . | 6 | 6 | 20 | 6 | 6 |
| Dakota.. | 7 | 12 | 5 | 6 | 6 | New Mexico. . . . . . | 6 | 12 | 15 | 6 | 4 |
| Delaware. | 6 | 6 | 20 | 6 | 3 | New York........... | 6 | $6^{*}$ | 20 | 6 | 6 |
| Dist. of Columbia | 6 | 10 | 12 | 3 | 3 | North Carolina . . . | 8 | 8 | 10 | 3 | 3 |
| Florida. | 8 | Any rate. | 20 | 3 | 2 | Ohio. . ............... | 6 | 8 | 5 | 15 | 6 |
| Georgia | 7 | 8 | 7 | 6 | 4 | Oregon. . . . . . . . . . . . | 8 | 10 | 10 | 6 | 1 |
| Idaho...... . . . . . . | - 10 | 18 | 6 | 5 | 4 | Pennsylvania...... | 6 | 6 | 5 | 6 | 6 |
| Illinois | 6 | 8 | 7 | 10 | 5 | Rhode Island....... | 6 | Any rate. | 20 | 6 | 6 |
| Indiana | 6 | 6 | 10 | 10 | 6 | South Carolina..... | 7 | 10 | 20 | 6 | 6 |
| lowa | 7 | 10 | 20 | 10 | 5 | Tenness 〕e. . . . . . . . . | 6 | 6 | 10 | 6 | 6 |
| Kansas. | 7 | 12 | 5 | 5 | 3 | Texas . . . . . . . . . . . . | 8 | 12 | 15 | 4 | 2 |
| Kentucky | 6 | 6 | 15 | 15 | 5 | Utah. . . . . . . . . . . . . | 10 | Any rate. | 5 | 4 | 2 |
| Louisiana ........... | 5 | 8 | 10 | 5 | 3 | Vermont. . . . . . . . . . | 6 | 6 | 8 | 6 | 6 |
| Maino | 6 | Any rate. | 20 | 6 | 6 | Virginia. . . . . . . . . . | 6 | 12 | 10 | 5 | 2 |
| Maryland.. . . . . . . . . | 6 | 6 | 12 | 3 | 3 | Washing ton Terr'y . | 10 | Any rate. | 6 | 6 | 3 |
| Massachusetts..... | 6 | Any rate. | 20 | 6 | 6 | West Virginia...... | 6 | $\dagger$ | 10 | 10 | 5 |
| Michigan........... | 7 | 10 | 6 | 6 | 6 | Wisconsin....... .... | . 7 | 10 | 20 | 6 | 6 |
| Minnesota. . . . . . . . . | 10 | Any rate. | 10 , | 6 | 6 | Wyoming . . . . . . . . . | 8 | Any rate. | 5 | 5 | 4 |
| Mississippi ......... | 6 | $10$ | 7 | 6 | 3 | W |  |  |  |  |  |

# -anninner <br> <br> NORTHFIELD KNIFE CO., <br> <br> NORTHFIELD KNIFE CO., <br> MANUFACTURERS OF <br> POCKET CYTx <br> WITH HAND-FORGED BLADES ONLY, <br> Shears and Raxors, <br> NORTHFIFLD, CONN. <br> PREMIUMS AWARDED FOR EXCELLENCE, <br> Centennial Exhibition, Exposition Universelle, International Exbibition, Phila., $1876 . \quad$ Paris, $1878 . \quad$ Melbourne, 1881. 



## To the Hardware Merchant.

DEAR SIR:
CAN WE SEND YOU A SAMPLE OF OUR SPECIALTY SINGLE HARNESS FOR YOUR INSPECTION? WE WANT TO ASTONISH YOU. THIS HARNESS IS THE PRODUCTION OF YEARS OF FIGURING TO MAKE THE BEST HARNESS EVER KNOWN FOR THE MONEY. IT IS MADE FROM OAK STOCK, HAND-STITCHED, HANDSOME FULL NICKEL OR IMITATION RUBBER, GOLD-FINISHED MOUNTINGS; SINGLE STRAP, OR FOLDED AND STITCHED STYLE. JUST THE HARNESS FOR AN ELECANT TURN-OUT. WE WANT YOU TO SEE A SAMPLE SET WHICH YOU CAN KEEP'AT \$2O, \$5 LESS THAN PRICE, OR RETURN AT OUR EXPENSE. IN DOUBLE STYLE, WITH COLLARS AND HAMES, OR STOLE'S PAT. BREAST COLLARS, \$35, \$IO LESS THAN PRICE. PLEASE ANSWER IF WE CAN SEND A SAMPLE, YES_OR NO, AND OBLIGE,

$$
\begin{aligned}
& \text { NATIONAL HARNESS CO., Wholesale Manufacturers, } \\
& \qquad \text { 14-24 Wells St., Buffalo, N. Y. } \\
& \left\{\begin{array}{c}
\text { Collar and Hames instead of Breast Collar, } \\
\$ 2 \text { extra, on Single Harness. }
\end{array}\right.
\end{aligned}
$$

## HOPKINS＇HANDY NOTES AND QUE，RIES．

Total Value of Articles by the Piece，Reckoned from 1 to 1 Dozen．

| KO9 |  |
| :---: | :---: |
|  |  |
| 산 －irin ज |  |
|  <br>  |  |
| ＊mm Noco <br>  |  |
| ～かの \％－irivincos サi N12 © |  |
|  <br>  <br>  <br>  |  |
|  <br>  |  |
|  |  |
|  <br>  |  |
|  |  |
|  |  |
|  |  |
| M－ <br>  |  |
|  |  |
|  |  |
|  |  |



## NORWICH LOCK MAN'G CO.,

 NORWICH, CONN., U.S. A., MANUFACTURERS OF
## DOOR LOCKS AND KNOBS

OF EVERE DESCRIPTIDN.

## BRONZE FARTDNARE,

A full and extensive line in all the popular styles of elaborate design and perfect finish.
BRASS AND BRONZED PADLOCKS,
In New and Salable Patterns.
CAST and WROUGHT IRON PADLOCKS, With Malleable or Flat Steel Keys. And a Large and Constantly Increasing line of

## BUILDERS' HARDWARE,

Including all the Latest Styles, and consisting of
Bronzed and Solid Bronze Door Butts and Handles, Sash Butts, Shutter Bars, Sash Lifts, Drawer Pulls, Door Bolts, Cupboard Turns and Screen Door Catches.


Fully Illustrated Catalogue of Thirty Different Styles and Sizes Sent Free on Application.

## WEIGHTS AND MEASURES.

## Avoirdurpois Weight.

The Grain is the same in Troy, Apothecaries and Avoidupois Weights.
The standard avoirdupois pound is the weight of 27.015 cubic inches of distilled water weighed in the air at 35.85 degrees Fahr., barometer at 30 inches.
27.343 grains $=1$ drachm.


## Troy Weight.

For Gold, Silver and Precious Metals.


175 lbs. Troy $=144$ Avoirdupois.
lbs. Avoirdupois $X, .822 s 6=1 \mathrm{bs}$. Troy.
lbs. Troy $\quad \times 1.2153=1 b s$. Avoirdupois.
The jeweler's Carat is equal, in the United States, to 3.2 grains; in London, to 3.17 grains; in Paris, to 3.18 .

Pure Gold is worth $\$ 20.67$ per oz. Troy, or $\$ 4.34$ per oz. Avoirdupois.


## Apothecaries, Weight. <br> United States and British.

20 grains. $\qquad$ 1 scruple.
8 craples................. 1 drachm $=60$ grains.
12 ounce3.................. 1 pound $=90$ drachms $=285$ scruples $=5760 \mathrm{grs}$.
In Troy and Apotiecaries' weights, the grain, ounce and pound are tbe same.
Long Mreasire.


A cable's length $=123$ fathoms.
A square mile is 640 acres.
A league is three miles.
The term "Sabbath Day's Journey" means 1,155 yards.
A day's joun zy is $331 / 8$ miles.
and (horse measure) is four inches. A palm is three inches.
A span is $10 \% / 8$ inches.
A cubit is two feet.
A fathom is six feet.
A great cubit is 11 feet.
Surveying MLeasure (Lineal).


1 knot or geographical mile $=6082.66$ feet $=1854$ metres $=1.152$ statute mile.
1 Admiralty knot $=1.1515$ statute miles $=6080$ feet.

## Table of Quantities.

```
12 units or articles,
12 dozen
20) unts or articles,
24 sheets paper,
```

1 dozen. $\mid 20$ quires 1 gross. 2 reams
1 zcore. 5 bundles
1 quire. Printer's token,

## Gurney Hot Water Heater,

FOR HEATING
Dwellings, Offices, Public Buildings and Greenhouses. MANUFACTURED BY
GURNEY HOT WATER HEATER CO.,
237 Franklin St., Boston, Mass. JOHN A. FISH, Managing Director.

## OVER 2500 IN USE SINCE 1885.

## Advantages of Hot Water Heating :

Equality of temperature throughout all parts of building. Simplicity of the apparatus-an ordinary male or female domestic fully competent to take charge. Perfectly noiseless ; no snapping or gurgling noises, common with steam. Consumption of fuel 25 per cent. less than by any other mode of heating. Send for descriptive catalogue, testimonials and prices.

## M. H. JOHNSON,

 GEN'L SALES AGENT.138, 140 Centre St., New York,

## CURIIS \& CO.,

#  

FOR STEAM, WATER, GAS AND OIL.


Railway, Steamship, Machinists', Engineers' and Factory Supplies.
I 38 and 140 Centre Street,
Têtephone "Spring 837."
New Torlz.
W. H. RANSOM, Manager.

SELLING AGENTS FOR
Crosby Steam Gage and Valve Co., Rensselaer Straightway, Gate Valves, Ideal Steam and Hot Water Radiators, Excelsior Radiators.

## WEIGHTS AND MEASURES-Continued.

Square Measure.


## Cubic Measure.



A cord of wood $=128$ cubic feet, being 4 feet high, 4 feet wide, and 8 feet long. 42 cuive teet $=a$ ton of shipping.

## a Cubic Foot is Equal to

1,28 cubic inches.
.037037 cubic yard
.803564 U. S. struck bushel of 2150.42
cubic inches.
3.21426 U . S. pecks.
7.48(152 U. S. liquid galls. of 231 cub. inch.
6.42851 U. S. dry gallons.
29.92208 U . S. liquid quarts.
25.71405 U. S. dry quarts. 59.84416 U. S. liquid pints.
51.42809 U. S. dry pints.
:299.37662 U. S. gills.
26667 flour barrel of 3 struck bushels. 23743 U.S. liquid barrel of $31 / 2$ gallons.

## Dry Heastre.

The Standard Bushel contains 215 , 48 cubic inches, or 77.627013 pounds avoirdupois of pure water at maximum density It legal dimensions are $181 / 2$ inches Diameter inside, 191 inches outside, and 8 inches deep; and when heaped, the cone must be 6 inches high, making a heaped bushel equal to $1 \frac{1}{4}$ struck ones.


## Liquid Measure.

The standard gallon measures 281 cubic inches, or 8.33888 lbs ,, avoirdupois of pure water, at about 39.85 degrees Fahr., the barometer at 30 inches.


A cubic foot contains $71 / 2$ gallons.


A YALUABLE IMPROYEMENT WHICH IS EXCELLENT, EFFIIIENT AND DURABLE.
Practically Tested and Thoroughly Reliable.

## 



The superiority of the NORWOOD SCREEN over the old style consists in the entire absence of lacing wire, in place of which strong iron cross-bars are used, with equally distant grooves, to receive the upright wires; a half-oval bar of iron, clamped at top of wires, makes it very strong and keeps the upright wires in the proper place, yet leaving a smooth surface for the sand to pass over.

One trial of this Screen will convince anyone that money can be saved by using the NORWOOD PATENT SCREEN.

These Screens are made in two sizes :
Small Size, $22 \times 60$ inches, Prico, $\$ 4.00$ each. Large Size, $27 \times 68$ inches. Price, $\$ 5.00$ each.

Proprietcor and Manufacturer

## J. NORW00D,

The Long Island Wire and Iron Works, 349 ADAMS STREET,

3RDOKIEN, N. Y.

## THE METRIC SYSTEM.

## WEEGETS.

Metric Denomınations and values.

| Names, | No. Grams. | Weight of what quantity of water at maximum density. | Avoirdupuis Weight. |
| :---: | :---: | :---: | :---: |
| Millier or tonneau | $=1,000,000$ | - 1 cubic meter | 2904 ¢ puunds |
| Quintal | 100,000 | 1 hectoliter = | 22046 pounds |
| Myriagram | 10,000 | 10 liters = | $22.04{ }^{\text {a }}$ j pounds |
| Kilogram or kilo | 1,000 | 1 liter | 2.204 j pounds |
| Hectogram | 100 | 1 deciliter | 3.5274 ouncus. |
| Dekagram | 10 | 10 c. centimeter $=$ | $0352 \%$ ounce. |
| Gram | 1 | 1c. centimeter $=$ | 15.43: grains. |
| Decigram | . 1 | . 1 c. centimeter $=$ | 15432 g! ains. |
| Centigram | . 01 | 10 c. milimeter $=$ | 0.1513 grain. |
| Milligram | . 001 | 1 c. millimeter $=$ | 0.0154 grain. |
|  | ITEASUR | OF LEVGTY. |  |
| Metric Denominatio | ons and Values. | Equlvalents in Denon | inations in use. |
| Myriameter $=1$ | 10,000 meters | - 6.2137 miles. |  |
| Kilometer | 1,000 meters | $=0.62137 \mathrm{~m}$. or 3,280 f | cet 10 inches. |
| Hectometer | 100 meters | $=328$ feet and 1 inch. |  |
| Dekimeter | 10 meters | 393.7 inches. |  |
| M ster | 1 meter | 39.37 inches. |  |
| Ducimeter | . 1 of a mete | - 3.937 inches. |  |
| Ceutimeter $=$ | . 01 of a mete | r $=0.393{ }^{\text {r inch }}$. |  |
| Mill:meter $=$ | . 001 of a meter | $=0.0 .94 \mathrm{inch}$. |  |

## MEASURES OF SUREACE.

Metric Denominations and Values.

| Hectare | $=10,000$ square meters $=2471$ acres. |
| :--- | :--- |
| Are | $=100$ square meters $=119.6$ square yards. |

## MEASURES OF CAPACITY.

Metric Denominations and Values.
Names. No. Liters. Cubic Measure.

Equivalents in Denominations in use.
Dry Measure. Wine Measure.
Kiloliter $=1,000=1$ cubic meter $=1.30 \dot{\text { cub }}$ cubic yards $=264.17$ gallons.
Hectoliter $=100=.1$ cubit meter $=2$ bush. $3.35 \mathrm{pks} .=26.417$ gallons.
Decalite: $\quad 10=10$ c.decimeters $=9.08$ quart $\quad=2.6417$ gallons.
Liter $\quad=\quad 1=1$ c. decimeter $=0.908$ quart $\quad=1.0587$ quarts
Deciliter $=\quad .1=.1 \mathrm{c}$. decimeter $=6.1022$ cabic inch $=0845$ gill.
Centiliter $=\quad .01=10$ c.centimeters $=0.6102$ cubic inch $=0.338$ flatd az.
Milliliter $=.001=1 \mathrm{c}$. centimeter $=0.061$ cubie fnches $=0.27$ fuid dr.
SWEEPER ONL $\mathbf{Y}$. Eastern Branch and Export Office.

TIME HAS DEMONSTRATED

The CELEBRATED BISSELL BROOM MOVEMENT is used in all of in one of our most valuable patents and Sweeper is perfect without this feature. Send fir our Descript this feature.
in detail.
Mechanical Construction and Finish Perfect
Every One is Guaranteed.

## HopkIIS＇hanoy Motes and puenies．

## METRIC SYSTEM OF WEIGHTS AND MEASURES．

The metric system is based upon the distance from the equator to the pole．The ten－millionth part of this arc was chosen as the unit of measure of length，and called a Metre．The cube of the thenth part of the metre was adopted as the unit of capacity，and denominated a Litre．The weight of a litre of distilled water at its greatest density was called a Kilogramme，or wression，are dis－
 milli，from the Latin ：

|  |  Hommmmmon <br>  <br>  |
| :---: | :---: |
|  | だ <br>  000000000 HNmmonNmmmゃめm 00000000000000円MHMHmbにの <br>  |
|  |  <br>  <br>  <br>  |
|  |  <br>  <br>  <br>  |
|  |  <br>  <br>  |
|  |  － <br>  |

## HEW YORK SAFETY DUMB WAITER FIXTURES

Datented United States, April 19th, 188\%; in Canada, May 18th, $188 \%$.


The MOST COMPLETE, SIMPLE and ABSOLUTELY SAFE WAITER made. Provided with SAFETY ROPE, AVOIDING ACCIDENT. ENTIRELY NOISELESS, and moves with perfectease.

FIXTURES ONE SIZE ONLY, adapted to any size waiter. Canbe adjusted by any CARPENTER or MECHANIC. DIAGRAM and FULL DIRECTIONS ACCOMPANY EACH SET.

HANDSOMELY BRONZED, and packed ONE SET in a BOX. Sold by the Hardware trade.

PRICE, 15.00.
For catalogue address the manufacturers.


We also make a Hand-Power Elerator (5001hs. Capacity).
Send for Descriptive Catalogue, also Sheet of Testimonials.

# THE EDWARD STORM SPRING CO., Limited, Poughkeepsie, N. Y. 

## or, JOHN H. GRAHAM \& CO., Sole Mfrs. Agents,

 113 Chambers Street, New York.
## HOPKINS' HANDY NOTES AND QUERIES.

SPECIFIC GRAVITY AND WEIGHTS OF VARIOUS SUBSTANCES.

| NAMES OF SUBSTANCES. | $\begin{array}{\|c\|} \hline \text { Average } \\ \hline \text { Per } \\ \text { Cubic Ft. } \end{array}$ | Weights. <br> PerSq.Ft. <br> 1 in. thick | Specific Gravity. | NAMES OF SUBSTANCES. | $\begin{gathered} \text { Average } \\ \hline \text { Per } \\ \text { Cubic Ft. } \end{gathered}$ | $\begin{aligned} & \text { Weights. } \\ & \text { PerSq.Ft. } \\ & 1 \text { in. thick } \end{aligned}$ | Specific Gravity. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Anthracite, solid, of Pa........... "، broken, loose........ shaken | $\square$ |  | 1.50 | Lead. $\qquad$ Lime, loose quicklime.... per bushel, 66 lbs. |  | 59.25 | 11.4 |
| '6 heaped bushel, loose. | ${ }_{87}^{(80 ~ p e r ~}$ | bushel, $7.25$ | heaped.) | Limestone and marble. Masonry, granite or lime | 168 |  | 2.7 |
| Brass, cast. . | 504 | 42. | 8.09 | ${ }_{6}{ }^{\text {a }}$ rubble | 164 |  |  |
| - 4 rolled. | 524 | 43.7 | 8.4 | " dry | 138 |  |  |
| Brick, best pressed | 150 |  | 2.4 | " sandstone | 144 |  |  |
| " common har | 125 |  | 2. | Mercury, at $32^{\circ} \mathrm{F}$. | 849 |  | 13.6 |
| " soft ........ | 100 |  | 1.6 | Mortar, hardened. | 103 $80-110$ | 8.6 | 1.66 |
| Brickwork, pressed b | 140 |  | 2.25 1.8 | Mud, dry. | 80-110 |  |  |
| Cement, Rosendale (loose). | 56 |  |  | Quartz... | 165 |  | 2.65 |
| "6 Louisville "6. | 50 |  |  | Salt, Syracuse, coars | 45 |  |  |
| Coal, bituminous, solid. | 90 84 |  | 1.3 1.35 | " fine Liverpool | 49 $90-106$ |  |  |
| "6, 6 ، broken, loose. | 49 (74 per | bushel, | heaped.) | " shaken....... <br> " perfectly wet | $\begin{array}{r} 99-117 \\ 120-140 \end{array}$ |  |  |
| Coke, loose. . . . . . . . . . . . . . . " heaped bushel, 38 lbs | 27 |  |  | Sandstone. Shales, red or black | 151 162 |  | 2.43 2.6 |
| Copper, cast. | 542 | 45.2 | 8.7 | Silver...... | 655 |  | 10.5 |
| 9.6 rolled...... | 548 | 45.7 | 8.8 | Slate | 175 | 14.6 | 2.8 |
| Earth, common dry, loose "، "6 rammed.. | 76 |  |  | Snow, fresh. "* | $\begin{array}{r} 5-12 \\ 15-20 \end{array}$ |  |  |
| " soft mud | 108 |  |  | Steel. . | 490 | $40{ }_{6}^{5}$ | 7.9 |
| Glass. | 157 | 13. | 2.53 | Sulphur | 125 |  | 2.0 |
| Gneiss. . | 168 |  | 2.7 | Tar. | 62 |  | 1.0 |
| Gold, cast, 24 kara | 1204 |  | 19.3 | Tin............... | 459 |  | 7.4 |
| Granite.... | 1217 |  | 19.6 2.73 | Turf or Peat, dry | 20-30 |  |  |
| Ice..... | 58.7 |  | 2.73 0.95 | Water, pure, at 60 | $62_{3}^{1}$ |  | 1.028 |
| Iron, cast | 450 | 37.5 | 7.24 | Zinc or Spelter, ca | 446 | 37.1 | 7.15 ; |
| " wrought (hammered) | 485 480 | 40.6 40. | 7.8 7.7 | ." .. rolled | 448 | 37.3 | 7.19 ) |

## DORTRAMPPOI GJTLREY GO.

New York Salesroom, 122 Chambers St., Only. Office and Factory, Northampton, Mass.


# HOPKINS HANDY IOTES AND QUERTES. 

## ELECTRICAL CONDUCTIVITY OF METALS.

The most reliable tests of electric conductivity of the metals are those lately made by Mr. L. Weiller. They were conducted with a series of bars specially prepared for the purpose. The measurements were taken by means of a Wheatstone bridge with a sliding index, a differential galvanometer, and a battery of four cells. The results are given in the following table, the comparison being based on the conductivity of silver, which is taken as 100:


## Relative Non-Conductivity of Materials.

Mr Charles E. Emery of New York recently made some experiments upon relative non-conductivity. with reference to the needs of the New York Steam Company. His apparatus consisted of a boiler 12 feet in diameter, with three 10 -inch flues passing through it. Inside these flues were smaller tubes, through which the steam passed. The non-conductors surrounded the inner tubes, and water was keptcirculating around the flues in the outer shell. A layer of hair felt 2 inches thick gave the best result, and usicg equal thicknesses of the other materials the following percentage was obtained :

Mineral wool, No. 2 and tar.... 71.5
Sawdust ...... ................... 68
Mineral wool, No. $1 . . . . . . . . . . . .6$
Charcoal ... ...................... 63.2
Pine wood, across grain ...... 55.3
Asbestos ............................. . 36.3
Coal ashes. . . . . . . . . . . . . . . . . . . . . . 34.5
Fuel coke................................ 27.7
Air space, 2 inches deep........... 13.6
The low result from air-space no doubt is due to the unimpeded circulation of the current.

## DIXON'S PLUMBAGO CRUCIBLES,

The Standard and of World-Wide Reputation.
DIXON'S SILICA-GRAPHITE FAINT,
Unaffected by Heat or Cold and Unrivaled for Wood or Metal. Just the thing for Boiler Fronts.
DIXON'S GRAPHITE MACHINE GREASE,
An almost Indestructible Lubricant for Loose Bearings or Gears.
DIXON'S PERFECTED DRY GRAPHITE,
Absolutely Pure and Free from Grit.
DIXON'S GRAPHITED OIL,
For Cooling Purposes and Close-Fitting Bearings.

## DIXON'S AMERICAN GRAPHITE PENCILS,

For Draughtsmen, for Offices and for Carpenters.
DIXON'S TRACTION BELT GREASE,
Causes New Belts to remain new, Prevents Slipping and Preserves the Leather.
DIXON'S GRAPHITE, PLUMBAGO, BLACK LEAD,
Prepared for all purposes.
Correspondence Solicited and Circulars Free.
JOSEPH DIXON: :CRUCIBLE CO. . JERSEY CITY, N. J., U. S. A.
1888. OVER IOOO TONS 1888.

USED WITH SAFETY TO MAN $\xlongequal{\text { OF }}$ BEAST


IS CONCEDED
BY ALL
Who Maxe Thooouen Tests.
NEEDED IN ALL THE VILLAGES OF AMERICA.
For Pamphlet, Address
Sold by Seedsmer, Wholosale and Retail,
B. HAMMOND,

FISHRTL-ON-HODSON, N, $X_{1}$

| Common Names Common Namen. | hemical Substances. <br> Ceemical Names. |
| :---: | :---: |
| Aqua Fortis. | Nitric Acid. |
| Aqua Regia. | Nitro-Muriatic Acid. |
| Blue Vitriol | Sulphate of Copper. |
| Cream of Tartar | Bitartrate Potassium: |
| Calomel | Chloride of Mercury. |
| Chalk. | Carbonate Calcium. |
| Salt of Tırtar | Carbonate of Potassa. |
| Caustic Potassa | Hydrate Potassium. |
| Chloroform. | Chloride of Gormyle. |
| Common Sa't | Chloride of Sodium. |
| Copperas, or Green Vitriol | Sulphate of Iron. |
| Corrosive Sublimate. | Bi-Chloride of Mercury. |
| Diamond. | Pure Carbon. |
| Dry Alum | Sulphate Alluminum and Potassium. |
| Epsom Salts | Sulphate of Magnesia. |
| Ethiops Mineral. | Black Sulphide of Mercury. |
| Fire Damp. | Light Oarburetted Hydrogen. |
| Galena. | Sulphide of Lead. |
| Glauber's Salt | Sulphate of Sodium. |
| Glucose | . Grape Sugar. |
| Goulard Wate | Basic Acetate of Lead. |
| Iron Pyrites. | Bi-Sulphide of Iron. |
| Jeweler's Putty. | Oxide of Tin. |
| King's Yellow. | Sulphide of Arsenic. |
| Laughing Gas | .Protoride of Nitrogen. |
| Lime...... | . Oxide of Calcium. |
| Lunar Caustic | Nitrate of Silver. |
| Mosaic Gold. | Bi-Sulphide of Tin. |
| Muriate of Lime. | Chloride of Calcium. |
| Nitre of Saltpetre | Nitrate of Potash. |
| Oil of Vitriol.. | Sulphuric Acid. |
| Potash. | . Oxide of Potassium. |
| Realgar | Sulphide of Arsenic. |
| Red Lead. | Oride of Lead. |
| Rust of Iron | Oride of Iron. |
| Salmoniac | Muriate of Ammonia. |
| Slacked Lime. | .Hydrate Calcium. |
| Soda. | . Oxide of Sodium. |
| Spirits of Hartshorn | Ammonia. |
| Spirit of Salt. . | Hydro-Chloric or Muriatic Acid. |
| Stucco, or Plaster of Paris | . Sulphate of Lime. |
| Sugar of Lead............. | Acetate of Lead. |
| Verdigris .. | . Basic Acetate of Copper. |
| Vermillion | . Sulphide of Mereury. |
| Vinegar... | A Actic Acid (Diluted). |
| Volatile Alkali | Ammonia. |
| Water.... | Oxids of Hydrogen |
| White Precipitate. | A mmoniated Mercury. |
| White Vitriol | . Sulphate of Zinc. |

## To Obtain the Weight of Grindstones.

Rule: Square the diameter (in inches), multiply by thickness (in inches), then multiply by decimal .06363.

Example: Find the weight of a stone 4 feet 6 inches diameter and 7 inches thick.
$4 \mathrm{ft} .6 \mathrm{in} .=54 \mathrm{inch} ;$ square of $54=2916$; multiplied by $7=$ 20412; multiplied by . $06363=$ Ans., 1298.815 lbs., which is weight of stone. All Grindstones weighing less than 200 lbs . are sold at "cut-weight." This is the actual weight over the scales as they come from the lathe (less a fair amount for moisture), and is cut into each stone. All Grindstones weighing over 200 pounds are sold by measurement-weight only, rule for which is given.




The Advantages of this Haft oyer others are:
1st. It is the only Haft or Tool Holder that carries the tools in the same end of the Holder in which they are used.
2d. No. shifting the Holder end for end in changing the instrument.
3d. No shaking the tools out into the hand to get the one wanted.

4th. The same motion that unscrews the instrument in use removes the cap that covers the surplis tools

5th. No wrench to be used.
64 . It has a solid handle and can be used with a mallet.

The Hafts are furnished with a Nickel-Plated Brass Cap. The Handle is Rosewood.

The Tools, fike Quality Steal Perfectiy Teypareo.
PRCE 86.50 P昨 D02.
Ner cass


## SOME THINGS THAT ARE MISNAMED.

The misapplication of a name in speaking of the common things of life is a source of many errors, especially in the young. The reason why things are not rightly named in all cases is not because of any deficiency of our language, but because the names of most common substances were given long years ago, and very often before the true nature of the articles were understood. The "Journal of Applied Science" has this to say upon the subject:

Why should trade not have a Johnson to classify and correct the mass of inconsistencies that go to make up its nomenclature? We not only tax our brains to invent "fantastic" names for every new fabric, varied, perhaps, only by a thread or a shade from what our grandparents wore a century ago, but there are in use positive misnomers for many staple articles of merchandise. The following imperfect list, culled from sources already at hand, will give a faint idea of them:

Acid (sour), applied in chemistry to a class of bodies to which sourness is only accidental, and by no means a universal characteristic. 'Thus rock crystals, quartz, flint, etc., are chemical acids, though no particle of acidity belongs to then.

Black lead does not contain a single particle of lead, being composed of carbon and iron.

Brazilian grass does not come from Brazil, or even grow there ; nor is it grass at all. It consists of a palm leaf (Thrinax argentea), and is imported chiefly from Cuba.

Burgundy pitch is not pitch, nor is it manufactured in or exported from Burgundy. Tre best is a resimous substance prepared from common frankincense, and brought from Hamburg; but by far the greater quantity is a mixture of rosin and palm oil.

China, as a name for porcelain, gives rise to the contradictory expressionsBritish china, Dutch china, Chelsea china, etc., like wooden milestones, iron milestones, brass shoe-horns, iron pens, steel pens.

Cuttle bone is not brno at all, but a structure of pure chalk, once embedded loosely in the substance of cortain species of cuttle fish. It is enclosed in a mem. braneous sac within the body of the fish, and drops out when the sac is opened, but it has no connection whatever with the sac of the cuttle fish.

Galvanized iron is not galvanized. It is simply iron coated with zinc; and this is done by dipping it in a zinc bath containing muriatic acid.
Germon silver is not silver at all, nor was the metallic alloy called by that name invented by a Gerinan, but has been in use in China time out oi mind.
Honey soap contains no honey, nor is honey in any way employed in its manufacture. It is a mixture of palm oil, soap and olive-oil soap, each one part, with three parts of curd soap, or yollow soap scented.

Japan lacquer contains no lac at all, but is made from the sap of a tree called Rhus vernicifera.
Kid gloves are not usually made from kid skins, but of lamb or sheep skins. At present many of them are made of rat skins.
Meerschaum is not petrified "sea foam," as its name implies, but is a composition of silica, magnesia and water.
Mosaic gold has no connection with Moses or the metal gold. It is an alloy of copper and zinc, used in the ancient museum or tessellated work.
Mother-of-pearl is the inner layer of several sorts of shells. It is not the mother of pearl, as its name indicates, but in some cases the matrix of tine perrl.
Pen means a feather (Latin penna, a wing). A steel pen is not a very choice expression.

Prussia blue does not come from Prussia, but is the precipitate of the salt of protoxide of iron with prussiate of potassa.

Salad oil is not oil for salad, but oil for cleaning sallades-i. e., helmets.
Salt is not salt at all, and has long been excluded from the class of bodies denominated "salts."

Sealing wax is not wax at all, nor does it contain a single particle of wax. It is made of shellac. Venice turpentine and cinnibar. Cinnibar gives it a deep, red color, and the tirpentine renders the shellac soft and less brittle.
Sperm oil properly ing:ns "seed oil" (Latin, sperma, seed), from the notion that it was spermaceti (the sperin or melt of a whale). The sperm whale is the whale that gives "seed oil," which is taken chiefly, but not wholly from the head.
Wh zlebone is not bone at all, nor does it possess any of the properties of bone. It is a substance attached to the upper jaw of the whale, and serves to strain the water which the creature takes up in large mouthfuls.
Rhinoceros horn is not horn at all, but a kind of matted or compact hair, and is only like a horn from being a protuberance on the animal's head.

# THE AUBURN taCk co., aUburrat, in. Y., 

MANUFACTURERS OF

## TACKS AND SMILL NAILS

OF EVERY DESCRIPTION.

# STEEL CARPET THCKS 

UNIFORM "HORSE SHOE" BRAND,

TWO OUNCES In Paper. All Sizes.
DOOBLE UNIFORII "HORSE SHOE" BRAND,
FOUR OUNCES In Paper. All Sizes.
Basket Taaks and Nails a Specialty. BARREL AND 3d FINE NAILS. HUNGARIAN NAILS, OVAL AND SHOT HEAD.

Length and Number of Cut Nails to the Pound．

| SIZE． | 3 <br>  <br>  <br> $H$ | $\begin{aligned} & \text { म } \\ & \text { ó } \\ & \text { B } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { 亏̈ } \\ & \text { 苝 } \end{aligned}$ | $\begin{aligned} & \dot{8} \\ & \dot{0} \\ & \text { E } \\ & =0 \end{aligned}$ |  | $\dot{\oplus}$ |  | $\begin{aligned} & \dot{80} \\ & \text { 苞 } \\ & \text { O } \end{aligned}$ | $\begin{aligned} & \text { 官 } \\ & \text { ám } \\ & \text { p. } \end{aligned}$ | O ¢ 0 0 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $3 / 4 \mathrm{in}$ |  |  |  |  |  | 800 |  |  |  |  |
| 7／8．．．．． | 1／8 |  |  |  |  |  | 500 |  |  |  |  |
| 2d．．．．． |  | 800 |  | ．．．． | 1100 | 100） | 376 |  |  |  |  |
| 3d．．．． | 11／4 | 480 | ．．． | ．．．． | 720 | 760 | 224 |  |  |  |  |
| 4d．．．．． | $11 / 2$ | 288 |  | $\cdots$ | 523 | 368 | 180 | 398 |  |  |  |
| 5d．．．．． | 13／4 | 200 |  |  | 410 |  |  |  |  | 130 |  |
| 6d．．．．． |  | 168 | 95 | $8 \pm$ | 268 |  |  | 224 | 126 | 96 |  |
| 7d．．．．． | 21／4 | 124 | 74 | 64 | 183 |  |  | ．．．． | 98 | 82 |  |
| 8d．．．． | 21／2 | 88 | 62 | 48 | 146 |  |  | 128 | 75 | 68 |  |
| 9d， | 23／4 | 70 | 53 | 36 | 130 |  |  | 110 | 65 |  |  |
| $10 \mathrm{d}$. | 3 | 58 | 46 | 30 | 102 |  |  | 91 | 55 |  | 28 |
| 12d．．．．． | 31／4 | 44 | 42 | 24 | 76 |  |  | 71 | 40 |  |  |
| 16d．．．．． |  | 34 | 38 | 20 | 62 |  |  | 54 | 27 |  | 22 |
| 20d．．．．． |  | 23 | 33 | 16 | 54 |  |  | 40 |  |  | 141／2 |
| 30d．．．．． | 41／2 | 18 | 20 |  |  |  |  | 33 |  |  | 123／2 |
| 40d．．．．． |  | 14 |  |  |  |  |  | 27 |  |  | 91 |
| 50d．．．．． |  | 10 |  |  |  |  |  |  |  |  | 8 |
| 60d． |  | 8 |  |  |  |  |  |  |  |  | 6 |
| ．．．．．．．．． | 61／2 |  |  |  |  |  |  |  |  |  | 53／2 |
| ．．．．．．．．．． | 8 |  |  |  |  |  |  |  |  |  | 41／2 |

NUMBER OF TACKS IN A POUND．

| Title． | Length． | No．per lb． |  | itle． | Length． | No．per 1 lb ． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 ounce． | ${ }_{1}^{3}$ inch． | 16，000 | 10 | ounce． | ${ }^{\frac{1}{1} 9} \mathrm{inch}$. | 1，600 |
| $11 / 2$ ounce． | ${ }^{\frac{7}{2} 2} \mathrm{inch}$ ． | 10，666 | 12 | ounce． | $\frac{1}{1} \frac{1}{6}$ inch． | 1，332 |
| 2 ounce． | $\frac{1}{4}$ inch． | 8，000 | 14 | ounce． | $\frac{1}{1} \frac{1}{6}$ inch． | 1，143 |
| $21 / 2$ ounce． | ${ }^{5} \mathrm{~F}$ inch． | 6，400 | 16 | ounce． | ${ }^{1} \frac{1}{6}$ inch． | 1，000 |
| 3 ounce． | $\frac{8}{7}$ inch． | 5，332 | 18 | ounce． | $\frac{1}{6}$ inch． | 888 |
| 4 ounce． | ${ }_{16}{ }^{\text {inch }}$ ． | 4，000 | 20 | ounce． | $\frac{15}{16}$ inch． | 800 |
| 6 ounce． | ${ }_{18}^{81} \mathrm{inch}$ ． | 2，666 | 22 | ounce． | 1 inch． | 727 |
| 8 ounce． | ${ }_{16}{ }^{9} \mathrm{inch}$ ． | 2.000 | 24 | ounce． | $1 \frac{1}{8}$ inch． | 666 |

STAスVDARD WIIEE BEAD IISI．

| Length． | Gạuge． |  |  | $\frac{\text { Length. }}{\text { Inch. }}$ | Gauge． |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inci． | Fine． | Med． | Stout． |  | Finc． | Med． | Stout． |
| 3／8 | 21 | 20 | 19 | 11／2 | 16 | 15 | 14 |
| \％ 4 | 20 | 19 | 18 | 13／4 | 15 | 14 | 13 |
| 5／8 | 20 | 19 | 18 | 2 | 14 | 13 | 12 |
| $3 / 4$ | 19 | 18 | 17 | 2114 | 14 | 13 | 12 |
| 7／8 | 18 | 17 | 16 | 21／2 | 13 | 12 | 11 |
| 1 | 18 | 17 | 16 | 23／4 | 13 | 12 | 11 |
| 11／4 | 17 | 16 | 15 | 3 | 12 | 11 | 10 |

The Term＂Penny＂as Applied to Nails．
The origin of the terms＂six－penny，＂＂ten－penny，＂etc．，as applied to nails，though not commonly known，is involved in no mystery whatever． Nails have been made a certain number of pounds to the thousand for many years，and are still reckoned in that way in England，a ten－penny being a thousand nails to ten pounds，a six－penny of thousand to six pounds，a twenty－penny weighing twenty pounds to the thousand；and，in ordering， buyers call for the three－pound，six－pound，or ten－pound variety，etc．，until＇， by the Englishmen＇s abbreviation of＂pun＂for＂pound，＂the abbreviation has been made to stand for penny，instead of pound，as originally intended．


JAYNE \& CROSBY, 110 LIBERTY STREET, NEW YORK.

## EXTRAS ON CUT NAILS.

At a meeting of the Nail Association held Feb. 9th, 1888, the following changes in the Schedule of Extras were unanimously adopted, to go into effect immediately, viz.:

The base to be 10d to 30d, No Extra.
40 d , 50 d and 60 d to be 25 cents per Keg above base.
3d Fine to be $\$ 1.75$ per Keg above base.
Clinch Nails to be $\$ 1$ above same length common Nail.
Each Half-Keg to be 15 cents extra.
The above changes leave the Extras above base standing thus:
8 d and 9 d Nails, Fencing, Sheathing and Brads, 40d, 50d, 60d Nails and all Spikes 25 cents.

6d and 7d Nails, Fencing and Sheathing and Brads, 50 cents.
4 d and 5 d Nails, Fencing, Sheathing and Brads, 75 cents.
3d, 31/2 and 4d Fine, \$1.50; 3d Fine, \$1.75; 2d, \$2.25.
Cooper, Tobacco and Slating to be 50c. above same length common Nail.
Flooring, Casing and Box to be 75c. above same length common Nail.
Clinch Nails and Finishing to be $\$ 1$ above same length common Nail.
Fine Finishing to be $\$ 125$ a bove same length common Nail.
Each Half-Keg, 15 cents Extra.

## Rules to be Observed in Ordering Metal or Wire.

In case parties ordering Metal or Wire have no Gauge, a small piece of either material may be sent, which will answer for the Number.

All Copper in Sheets is numbered according to Stubs' Gauge.
All Brass in Sheets is numbered according to Brown \& Sharpe's Gauge.
Brass and Copper Wire is numbered according to Stubs' Gauge
Brazed Brass and Copper Tubing is numbered according to Brown \& Sharpe's Gauge.

Seamless Brass and Copper Tubing is numbered according to Stubs' Gauge.

All orders, when the name of Gauge is nnt stated, will be filled as above.
In ordering Metal alw ys te width and temper wanted.
In ordering Wire always state whether Hard, Soft or Spring Wire is wanted.

The term " High" Brass r fers to color, and not to temper.
For table of informati n relating to Weights and Sizes of Sheet Copper, see Contents

For table slowing the difference between Gauges, see Contents.

## Copper Rivets and Burs.

Copper Rivets and Burs are picked as follows:
Belt Rivets and Burs. an equal number of each in 1 lt , boxes.
Belt Rivets only, in 1 H b boxes
Belt and Hose Rivets only, no Burs. in 4 lt . boxes.
Oval Head Trunk Rivets only, n , Burs, No. 9 , in 4 lb . boxes.
Braziers' Rivets only, in 5 tt . boses.
Burs only, in 1 b . boxes.
Belt Rivets, assorted lengths, from ${ }^{3}$ inch to $3 / 4$ inch, of one number, with Burs to match, in $1 / 2 \mathrm{H}$. and 1 lb . boxes.

## Sizes of Soldering Coppers.

Pointed, $11 / 2 \mathrm{lbs}$. per pair.
2, 3. 4 5, 6. 7, 8. 9, 10, 12 lbs. per pair.
Flat, $3,4,5,6,7, \times$ ths. per pair.
Hatchet, 4, 5, 6, 7, 8, 9, 10 lbs. per pair.
Roofing, 11 Њs. per pair, with handles and shield.

## CUT SPIKES.

NUMBER IN KEG OF 100 POUNDS.

| 3 | inch. | 2900 | 5 | inch | 950 | $6 \frac{1}{2}$ | inch | ..... 575 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $3 \frac{1}{2}$ | " | . 2100 | $5 \frac{1}{2}$ | " | . 850 | 7 | " | . 450 |
| 4 | " | . 1500 | 6 | ، | . 775 | 8 | " | . 375 |
| $4 \frac{1}{2}$ | " | .. 1150 |  |  |  |  | , |  |

RAILROAD SPIKES.
NUMBER IN 100 POUNDS.

|  | Length. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 14 |
| $\frac{1}{4}$ | 1340 | 1060 | 870 | 680 |  |  |  |  |  |  |
| $\frac{5}{16}$ |  | 620 | 580 | 540 |  |  |  |  |  |  |
| $\frac{3}{8}$ |  |  | 460 | 380 | 320 | 290 | 250 |  |  |  |
| ${ }_{-1}{ }^{8}$ |  |  | 320 | 280 | 240 | 220 | 200 |  |  |  |
| $\begin{aligned} & 1 \\ & \frac{1}{5} \end{aligned}$ |  |  | 260 | 210 | 180 | 170 | 140 | 130 | 110 |  |
| $\frac{5}{8}$ |  |  | 170 | 130 |  |  | 100 | 90 | 80 | 70 |

## WROUGHT BOAT AND SHIP SPIKES.

NUMBER IN A KEG OF 150 POUND8.


## WEIGHT AND THICKNESS OF BOILER IRON.



## HOPIKINS' HANDY NOTES AND QUERIES.

## TABLE

SHOWING AVERAGE WEIGHT PER FATHOM, ADMIRALTY TEST, AND SIZES OF CHAINS REQUIRED FOR VESSELS, ACCORDING TO THEIR REGISTERED TONNAGE. FOR LOW DECK VESSELS ADD ONE FIFTH TO TEE TONNAGE.

| Size. <br> Inches. |  | Proved. $A \nabla^{\prime} g$ Weight per Fathom. |  | Size of Rope. | Proof. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Stud. | Short Link. | Inches. | Cable <br> Chain | B B B Crane Chain. |  |  |
| 3-16 | 50 |  | 4 | 1 |  |  |  |  |
| 1/4 | 80 |  | 6 | 13/6 | 1 | 13/2 |  |  |
| 5-16 | 100 | ....... | T | 23/2 | 11/2 | 2 |  |  |
| 3/8 | 140 |  | 9 | $31 / 4$ | 2 | 3 |  |  |
| 7-16 | 210 |  | 12 | 4 | 3 | 4 |  |  |
|  | 265 |  | 15 | 43/4 | 4 | 5 | 30 | 150 |
| 9-16 | 320 |  | 19 | 51\% | 5 | 6 | 50 | 200 |
| 5/8 | 420 |  | 25 | $61 / 4$ | 6 | 8 | 75 | 390 |
| 11-16 | 500 |  | 3. | $7{ }^{4}$ | 8 | 10 | 100 | 400 |
| 3/4 | 590 | 33 | 35 | $73 / 4$ | 10 | 12 | 100 | 500 |
| 13-16 | 680 | 38 | 40 | 81/2 | 12 | 14 | 110 | 609 |
| 7/8 | 790 | 43 | 46 | $91 / 4$ | 14 | 16 | 130 | 70) |
| 15-16 | ..... | 50 | 54 | 10 | 16 | 18 | 160 | 800 |
| 1 |  | 58 | 61 | 103/4 | 18 | 22 | 200 | 900 |
| 1 1-16 |  | 65 | 69 | 111/4 | 20 | 26 | 240 | 1,109 |
| 11/8 |  | 72 | 76 | 12 | 23 | 23 | 280 | 1,36.) |
| 13 -16 |  | 80 | 85 | 123/4 | 26 | $3)$ | 320 | 1,45) |
| 11/4 |  | 89 | 95 | 131/2 | 28 | 34 | 360 | 1,401 |
| 1 5-16 |  | 98 | 104 | $141 / 4$ | 20 | 37 | 400 | 1,75\%) |
|  |  | 110 | 115 | 15 | 34 | 41 | 440 | 1,90) |
| 1 7-16 |  | 118 | 125 | 151/2 | 37 | 44 | 500 | 2,101 |
| $11 / 2$ |  | 123 | 135 | 16 | 41 | 48 | 550 | 2,301 |
| 19-16 |  | 138 | 148 | 16\% | 44 | 52 | 600 | 2,50 |
| 15/8 |  | 150 | 160 | 171/4 | 48 | 66 | 703 | 2,70) |
| $111-16$ |  | 161 |  | 18 | 52 |  | 850 | 2, 3 (1) |
| $13 / 4$ |  | 175 |  | 15\% | 56 |  | 1,100 | 3,140 |
| $113-16$ |  | 188 |  | 198 | 60 |  | 1,150 | 3,300 |
| 17/8 |  | 200 |  | 20 | 64 |  | 1,300 | 3.509 |
| $115-16$ |  | 215 |  | 21 | 68 |  | 1,450 | $3,71)$ |
| $\%$ |  | 230 |  | 22 | 72 |  | 1,600 | 3,90i) |
| 21/8 |  | 250 |  |  | 80 |  | 2,000 | 4,311 |
| 21/4 |  | 290 | . | ..... | 88 | ......... | 2,500 | 4,700 |

3/8 inch and smaller chains are made of full size iron; ail other sizes exact. Tasted to the English Admiralty Standard.

## German Coil Chain.

| Wire Gauge................ | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | 0001 | 00 | 0 | 1 | 12 | 3 | 4 | 5 | 6 |
| Weight in lbs.of 100 feet... | 371 | 30X | 24 | 19 | $148 / 4$ | 111/4 | $83 / 4$ | 7 | 414 |
| Breaking Strength | 695 |  | 520 | 488 | 360 | 322 |  |  |  |



## THE STAR Safety Razor.

This is the first Safety Razor and the only one that has given perfect satisfaction and is endorsed by many prominent men.

## Patented :

June 15, 1880, June 22, 1850, May 4, 1886, June 22, 1886, June 22, 1886, December 14, 1886 , March 8, 1887, April 12, 1887,

## KAMPFE BROS.

No. 8 Reade St., ヘNEV エOFIK.

#  

## Manufacturers of

## Manilla, Sisal and Hemp



#  

No. 46 South Street, New York. .

## APPROXIMATE WEIGHT and STRENGTH of CORDAGE.

Furnished by L. Waiterbury \& Co., New York City.


The relative strength of Manila to Sisal is about as 7 is to 5 ; or Manila is about 25 per cent. stronger than Sisal. Hawser-laid Kope will weigh one-sixth less.

Number of Railroad Spikes Used to One Mile of Track.

| Size measured under head. | Average Nn. per keg of 200 lbs . | Ties 2 feet between centers, 4 spikes per tie makes per mile. | Rail used, weight per yard. |
| :---: | :---: | :---: | :---: |
| $5 \frac{1}{2} \times \frac{9}{19}$ | 375 | $5870 \mathrm{lbs}=291.8 \mathrm{kegs}$. | 45 to 70 |
| $5 \times 5$ | 400 | 5170 " $=26$ " | 40 to 56 |
| $5 \times$ | 450 | $4660 \quad *=23 \frac{1}{3}$ | 35 to 40 |
| $4 \frac{1}{2} \times \frac{1}{2}$ | ¢,30 | 3960 ' $\quad=20$ " | 28 to 35 |
| $4 \times \frac{1}{2}$ | 600 | $35 \% 0$ " $=17 \frac{2}{3}$ " | 24 to 35 |
| $4 \frac{1}{2} \mathrm{x}_{\frac{1}{7}}{ }^{7}$ | 680 | $3110{ }^{6} \mathbf{6}=15 \frac{1}{2}$ " | ) 20 to 30 |
| ${ }_{4}^{4} \mathrm{x}_{1}^{7}{ }^{7}{ }^{6}$ | 720 | 2910 " ${ }^{2}=14{ }^{3}$ " 6 | $\{20$ to 30 |
| $3 \frac{13}{2} \times{ }_{1}^{76}$ | 900 | 2350 2090 ، $=11 \times 6$ | \} 16 to 25 |
| $4 \times 3$ | 1009 | 2090 ' $6=10 \frac{1}{2} \quad 6$ | $\} 16$ to 25 |
| $3 \frac{1}{2} \times x^{\frac{3}{3}}$ | 1190 | $\begin{aligned} & 1780 \\ & 1710\end{aligned} \quad 6=9{ }^{\prime} \quad 6$ | \} 16 to 20 |
| $3{ }^{3}$ | 1240 |  | $\} 16$ to 20 |
| $2 \frac{1}{2} \times \frac{3}{7}$ | 1342 | $1575{ }^{\prime \prime}=7 \frac{7}{8}{ }^{\text {c }}$ | 12 to 16 |

## BOSIEY'S Flexible RubberWeather Strips sollo rubber-mouloed into shape. ALL ONE PIECE. NO STITCHING. NO CEMENTING. PATENT APPLIED FOR.



No. 8-Size $\frac{3}{8}$ in. Price per foot, 5 cents

No. 8-For the Sides of Windows.


No. 9-Size $\frac{1}{2}$ in.
Price. per foot, 6 cents.

No. 9-For the Sides of Windows, and Sides and Tops of Doors.


No. 10 -Size $\frac{3}{4} \mathrm{in}$. Price. per foot, 8 cents.

No. 10-For Sides and Tops of Doors, and the Bottom of Light Doors.


> No. 11 -Size 1 in. Price............per foot, 10 cents.

No. 11 -For the Bottom of Heavy Doors.
These Flexible Weather Strips are put up in lengths of 50 feet, making a package about 6 or 8 inches wide- 1000 feet making one foot square. Anyone can apply them, with tack-hammer and shears.

## Liberal Discounts to the Trade.

Manufactured Only by

## D. W. BOSTEY \& CO.,

273 East Madison St., CHICAGO, ILL., U.S. A:
JoH. II. GRAHAM \& CO., Sole Agents, IIs Chambers St., Yew York.

## HOPKINS' HANDY NOTES AND QUERIES.

## OVAL SLIDE VISES.

SIZES OF SCREWS AND LENGTH OF JAWS.

| Nos......................... | 00 | 0 | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Sizes of Screws...inches \| | $\frac{1}{2}$ | $\frac{5}{8}$ | $\frac{3}{4}$ | $\frac{7}{8}$ | 1 | $1 \frac{1}{8}$ |
| Length of Jaws...inches | 2 | 2 | $2 \frac{1}{4}$ | 3 | $3 \frac{1}{2}$ | 4 |

## SOLID BOX VISES.

LENGTH OF JAWS TO EACH SIZE MANUFACTURED.

| Nos .......................... \| $25\|30\| 35\|40\| 45\|50\| 55\|60\| 65$ |
| :---: |
| Length of Jows |

SOLID BOX VISES. - (CONTINUED.)
$\overline{\text { Nos .................... } 170|75| 80|85| 90|95| 100|105| 110}$

| Lg'th of Jaws. inches $\|5\| 5 \frac{1}{4}$ | $5 \frac{1}{4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| Nos......................... | 115 | 120 |  | 130 | 135 | 140 | 145 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Length of Jaws....inches | $6 \frac{1}{4}$ | $6 \frac{1}{2}$ | $6 \frac{1}{2}$ | $6 \stackrel{3}{4}$ | $6{ }_{+}^{3}$ | 7 | 7 |
| Solid box vises. - (continued.) |  |  |  |  |  |  |  |
| Nos................................ \|150|160|170| |  |  |  |  | 180 | 190 | 200 |
| Length of Jaws. | ches | 7 | $7 \frac{1}{4}$ | $\left.7 \frac{1}{4} \right\rvert\,$ | 8 | 8 | 8 |

## BOXES AND SCREWS.

Diam. of Screw.

| $1 \frac{1}{8}$ inch. | No. 1, | for | Vises | from | No. | 30 to | No. | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \frac{1}{4}{ }^{6}$ | " 2 , | , | " | ، | " | 55 to | : 6 | 70 |
| $1 \frac{1}{4}$ | ': 3, | ، | . | " | '6 | 75 to | '6 | 85 |
| 1 | '6 4. | ، | - ، 6 | " | '6 | 90 to | 6: | 100 |
| $1 \frac{1}{2}$ | 5 | " | " | " | '6 | 105 to | '6 | 125 |
| $1 \frac{3}{4}$ " | 6 , |  | \% | '6 | '، | 130 to | '6 | 195 |
| 2 " | " 7 , |  |  | 6 |  | 200 to |  | 250 |

## Rope and Iron-Strapped Tackle Blocks.

DIAMETER OF SHEAVES AND SIZE OF ROPE TAKEN BY EACH.

| Lg'th of Blocks...inches | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diam. of Wheels..inches | $2 \frac{1}{2}$ | 3 | $3 \frac{1}{2}$ | $4 \frac{1}{4}$ | 5 | 5 |  | 71 $\frac{1}{4}$ | 18 |
| Diam. of Rope....inches |  | 5 |  | $\frac{7}{8}$ | 1 |  | $11 \frac{1}{8}$ | $1 \frac{1}{8}$ | $1{ }^{\frac{1}{4}}$ |

THICK MORTISE BLOCKS.

| Length of Blocks.........inches \| | 9 | 10 | 11 | 12 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Diameter of Wheels......inches | $5{ }_{4}^{3}$ | $6 \frac{1}{2}$ | 71 | 8 |  |
| Diameter of Rope........inches | $1{ }^{\frac{1}{4}}$ | $1 \frac{3}{8}$ | $1 \frac{1}{2}$ | 112 |  |

The Greatest Labor-Saving Tool extant. Saves its cost in a very short time.


Blades are made of the finest Steel and tempered with great care.

Warranted throughout.
The Screw-Driver herewith represented is designed more especially for light and rapid work.
Machinists, Gun and Locksmiths, Cabinet-Makers, CoffinMakers, Carriage-Makers, and all other mechanics who have large numbers of screws to drive will find it a very convenient tool.
No tiresome turning of the hand and twisting of the wrist. Press forward, and the spiral turns the screws.

Be sure you get the original "Allard," and not an imitation.

## PRICE LIST.

No. 1.-Brass Cylinder and Black Walnut Handle, retail, $\$ 2.25$ each, net; $\$ 27.00$ per doz. No. 2.-Nickeled Cylinder, Rosewood Handles, $\$ 2.50$ each, net ; $\$ 30.00$ per doz. No. 3.-Brass Cylinder, Rosewood Handles, small size, $\$ 2.25$ each, net; $\$ 27.00$ per doz. No. 4.Nickeled Cylinder, Rosewood Handles, small size, $\$ 2.50$ each, net ; $\$ 30.10$ per doz. Trade discount, 25 per cent. Terms, 60 days, or 2 per cent. off for cash. 10 days, f. o. b. Factory or New York.
N. B. -May be ordered from your nearest Jobber in all the principal cities throughout the United States and Canada, who will supply you at above discount, thus saving freight charges. A sample by mail at above price.


Price, $\$ 6$ per Dozen.
Discount 25 per Cent.
Manufactured by
WALLEN \& NESBITT.

Manulactured by F. A. HOWARD.

## The ALFORD \& BERKELE COMPANY, Sole Agents

P. O. Box 2002.

## HOPKINS HANDY NOTES AND OUTLIES．

FROM BROVVN \＆SHARIE，
TABLE OF DECIMAI，FQUIVALENTS． of 8ths， 16 ths， 32 nds and 641 hs of an Inch． for use in connection wirh
MIICROMNEIーI CAIIPER．

| 8ths． | 32 nds ． | 64ths． | 64ths． |
| :---: | :---: | :---: | :---: |
| $\frac{1}{8}=.125$ | $\frac{1}{32}=.03125$ | $\frac{1}{6 \pm}=.015625$ | ${ }^{\frac{33}{8}}=.515625$ |
| $\frac{1}{4}=.250$ | $\frac{3}{32}=.09375$ | $\frac{3}{64}=.046875$ | 做 8.546875 |
| $\frac{3}{8}=.375$ | $\frac{5}{3 .}=.15625$ | $\frac{5}{67}=.078125$ | ${ }^{37} \times 27878125$ |
| $=.500$ | ${ }^{7}{ }_{8}^{7}=121875$ | ${ }_{6}{ }^{7}=.109375$ | $\frac{39}{89}=.609375$ |
| $=.625$ | ${ }^{\frac{9}{3 z}}=.28125$ | $\frac{9}{64}=.140625$ | ${ }_{6}^{41}=.640625$ |
| $=.750$ | $\frac{11}{32}=.34375$ | $\frac{111}{61}=.171875$ | $\frac{43}{64}=.671875$ |
| $\frac{7}{7}=.875$ | $\frac{13}{3}=.40625$ | $\frac{1}{6} \frac{1}{6}+1.203125$ |  |
| 16 ths． | $\frac{15}{32}=.46875$ | $\frac{1}{15} 5=.234375$ |  |
| $\frac{1}{16}=.0625$ | $\frac{17}{3} \frac{17}{2}=.53125$ | $\frac{17}{17}=.265625$ | 䃀产＝$=.765625$ |
| ${ }_{1}{ }^{3} 6=.1875$ | $\frac{19}{3} \frac{19}{2}=.59375$ |  | $\frac{61}{61}=.796875$ |
| ${ }_{1}^{5} 6=.3125$ | $\frac{21}{3} \frac{1}{2}=.65625$ | ${ }_{6}{ }_{6}^{1} \frac{1}{4}=.328125$ | $\frac{54}{64}=.828125$ |
| $\frac{76}{76}=.4375$ | $\frac{23}{3}=.71875$ | $\frac{23}{\frac{23}{1}}=.359375$ | ${ }_{5}^{55} 4=.859375$ |
| $\frac{96}{16}=.5625$ | ${ }^{3}=.78125$ | ${ }_{6}^{65}$ | $\frac{{ }^{\frac{57}{6}}{ }^{\frac{4}{4}}=.890625}{}$ |
| $\frac{1}{16}=.6875$ | $\frac{3}{3} \frac{3}{3}=.84375$ | $\frac{8}{67} \frac{6}{6}=.421875$ | $\frac{59}{64}=.921875$ |
| $\frac{3}{5}=.8125$ | ． 90625 | $=.453125$ | ${ }_{6}^{61} 6$ |
| $\frac{15}{16}=.9375$ | $\frac{31}{32}=.96875$ | $\frac{31}{81}=.484375$ | $\frac{613}{64}=.984375$ |

TABLE OF DECIMAL EQUIVALENTS
OF MILLIMETERS AND FRACTIONS OF MILLIMETERS，
FOR UEE IN CONNECTION WITH


| mm ．Inches． | mm．Inches． | mm．Inches． | mm．Inches． |
| :---: | :---: | :---: | :---: |
| $\frac{1}{50}=.00079$ | $\frac{20}{50}=.01575$ | $\frac{3}{89} 0=.03071$ | ． 35433 |
| $\frac{2}{50}=.00157$ | $\frac{2}{50}=.01654$ | $40=.03150$ | $10=.39370$ |
| ${ }_{60}^{30}=.00236$ | $\frac{22}{50} 0=.01732$ | ${ }_{4}^{4} \frac{1}{50}=.03228$ | $11=.43307$ |
| ${ }_{5}^{4}=0.00315$ | $\frac{23}{30}=.01811$ | $\frac{42}{50}=.03307$ | $12=.47244$ |
| $\frac{5}{60}=.00394$ | $\frac{2}{5} 4=.01890$ | $\frac{43}{50}=.03386$ | $13=.51181$ |
| $\frac{6}{60}=.00472$ | $\frac{25}{50}=.01969$ | ${ }_{5}^{4} 4=.03465$ | $14=.55118$ |
| ${ }_{\frac{7}{50}}^{50}=.00551$ | $\frac{20}{50}=.02047$ ． | ${ }^{4} 50=.03543$ | $15=.59055$ |
| ${ }_{50}^{80}=.00630$ | $\frac{27}{50}=.02126$ | $\frac{46}{50}=.03622$ | $16=.62992$ |
| $\frac{9}{50}=.00709$ | $\frac{2}{5} \frac{8}{0}=.02205$ | ${ }_{5}^{47}{ }_{5}^{4}=.03701$ | $17=.66929$ |
| $=.00787$ | $\frac{2}{6} \frac{4}{0}=.02283$ | $\frac{48}{5} \frac{8}{0}=.03780$ | $18=.70866$ |
| $\frac{1}{0}=.00866$ | $\frac{30}{0}=.02362$ | $\frac{49}{50}=.03858$ | $19=.74803$ |
| ＝． 00945 | $\frac{31}{31}=.02441$ | $1=.03937$ | $20=.78740$ |
| $3=.01024$ | $\frac{32}{30}=.02520$ | $2=.07874$ | $21=.82677$ |
| $\frac{14}{50}=.01102$ | $\frac{33}{50}=.02598$ | $3=.11811$ | $22=.86614$ |
| $\frac{15}{50}=.01181$ | $\frac{34}{50}=.020377$ | $4=.15748$ | $23=.90551$ |
| $\frac{1}{56}=.01260$ | $\frac{35}{50}=.02756$ | $5=.19685$ | $24=.94488$ |
| $\frac{1}{67}=.01339$ | $\frac{36}{30}=.02835$ | $6=.23622$ | $25=.98425$ |
| $\frac{1}{5} 8=.01417$ | $\frac{37}{30}=.02913$ | $7=.27559$ | $26=1.02362$ |
| $\frac{1}{5} \frac{9}{0}=.01496$ | $\frac{38}{88}=.02992$ | $8=.31496$ |  |

$10 \mathrm{~mm} .=1$ Centimeter $=0.3937$ inches.
10 cm ．$=1$ Decimeter $=3.937 \quad$＂ $10 \mathrm{dm} .=1$ Meter $=39.37 \quad$＂ 25.4 mm ．$=1$ English Inch．

#  

13 Barclay Street，New York．

Seamless Cotton and Mildew－Proof，Rubber Lined

## ＂EUREKA GARDEN HOSE＂



This Company for the season＇s trade in Garden Hose invites the especial attention of dealers，and solicits their orders for our prodncts of Hose for Household purposes．This Hose is known as the Eureka Grrden Hose，which we have greatly improved in appearance and weaving－unequalled by any and the very best Hose in the market．

## EUREKA GARDEN HOSE SELLS ON SIGHT．

It is superior to the best Rubber Hose for darability and strength．It is Mildew－Proof and will stand over 500 lbs ．pressure per square inch and outlasts Rulber－Hose many times over．

## EXPOSE IT TO DRY AFTER USE，

thrugh it may be soaked every time it is used；having no outside covering to imprison the moisture，will，if given a fair chance，dry immediately，no gas is genersted and the cotton is uninjured．This is a proven fact in fire departments，where our rubber－lined Cotton－Hose has been known to outlast all others many years．After use do not reel np wet，but pnt this Hose in the sun where it can dry and it will last many years．Once handled by the trade and used by the consumer，it has given the highest satisfaction to both parties．

## THE EUREKA GARDEN HOSE

cannot be injured by exposure to sun，same as Rubber Hose．


SEND FOF S．AMエアエ卫S．
Subject to Liberal Discount to the Trade．Couplings attached and Pipes Furnished when Required．

BPECIAL NATICE：
For tho past ten years we have had this brand of Hose in the market，which has proven a Great Success，Millions of Feet Being Sold．

The Success of the Eureka Fire Hose Company＇s Garden Hose is due to the fact of the ex－ cellence of the material used in the manufacture，and also to its being treated mildew－proof， which is of vital importance to the success and durability of Cotton－Hose．

The Insure getting a Perfect Garden Hose，see that each length bears the brand of

## PERKINS HORSE SHOES.

Weight expressed in ounces.

| Front Shoes, No. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Light.................. | 13 | 15 | 17 | 21 | 24 | 29 | 35 |  |  |
| Medium............ |  | 17 | 20 | 24 | 28 | 34 | 38 |  |  |
| Heary ............. |  | 19 | 22 | 27 | 32 | 36 | 41 | 49 | 54 |
| Hind Shoes, No.. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Light ............... | 10 | 12 | 15 | 18 | 22 | 26 | 31 |  |  |
| Medium ........... |  | 14 | 16 | 20 | 24 | 28 | 33 |  |  |
| Heary ............. |  | 14 | 17 | 21 | 25 | 30 | 34 | 38 | 43 |
| Mule, No.......... | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |  |
| Front Shoes....... | 10 | 12 | 15 | 18 | 22 | 25 | 29 |  |  |

"Ausable" Horse Shoe Nails.
STANDARD SIZES.

|  | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Length in inches. | 15 | $1 \frac{15}{16}$ | $2{ }_{32}^{1}$ | $2 \frac{1}{4}$ | $2{ }_{16}^{7}$. | $2_{16}^{9}$ | $2+\frac{1}{6}$ | $1{ }_{1}^{16}$ |
| Number in pound | 276 | 168 | 138 | 110 | 96 | 80 | 73 | 57 |


| WEIGHT OF IRON TIRE.-Per Set of 54 feet. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Size. | Lbs. | Size. | Lbs. | Size. | Lbs. |
| $1 \mathrm{x}_{1}{ }_{1}{ }_{6}$ | 34 | $1 \frac{1}{4} \times \frac{1}{4}$ | 56 | $1{ }_{2}{ }^{\frac{5}{5}}$ | 169 |
| $1 \times \frac{1}{4}$ | 45 | $1{ }^{1} x^{\frac{5}{16}}$. | 70 | $1{ }^{5} \times 1{ }^{\frac{1}{2}}$ | 148 |
| $1 \mathrm{x}_{16}{ }^{\frac{5}{2}}$ | 56 | $1{ }^{1} \times \frac{3}{8}$ | 85 | $1{ }^{\frac{5}{8}} \times 2$ | 183 |
| $1 \times \frac{3}{8}$ | 68 | $1 \frac{1}{4} x_{1}^{7}{ }^{7}$ | 99 | $1{ }^{\frac{3}{4}} \mathrm{x}$ 2 ${ }_{2}^{1}$ | 158 |
| $1 \frac{1}{8} \mathrm{x}_{\frac{1}{4}}$ | 50 | $1 \frac{1}{4} \times \frac{1}{2}$ | 113 | $1{ }^{3} \times{ }^{5}$ | 197 |
| $1{ }_{1} \mathrm{x}^{\frac{5}{6}}{ }^{\text {a }}$ | 63 | $1{ }^{3} \times \frac{3}{8}$ | 93 | $1{ }_{4}^{3} \times{ }^{3}$ | 236 |
| $1{ }^{1} \mathrm{x} \times \frac{3}{8}$ | 75 | $1 \frac{3}{8} \mathrm{x} \frac{1}{2}$ | 124 | $2 \times \frac{1}{2}$ | 180 |
| $1 \frac{1}{8} \times \frac{7}{16}$ | 88 | $1 \frac{1}{2} \times \frac{3}{8}$ | 101 | $2 \mathrm{x}_{8}^{5}$ | 225 |
| $1 \frac{1}{8} \times \frac{1}{2}$ | 101 | $1 \frac{1}{2} \times \frac{1}{2}$ | 135 | $2 \times \frac{3}{4}$ | 270 |

WEIGHT OF STEEL TIRE.-Per Set of 54 feet.

| Size. | Lbs. | Size. | Lbs. | Size. | Lbs. | Size. | Lbs. | Size. | Lb |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{5}{8} \mathrm{x}^{1} \frac{1}{6}$ | $7 \frac{1}{2}$ | $\frac{5}{8} \mathrm{x}$ | 111 $\frac{1}{2}$ | $\frac{5}{8} \times \frac{1}{8}$ | $15 \frac{1}{4}$ | $\frac{5}{8} \mathrm{x}$ | 223 ${ }^{\frac{3}{4}}$ |  | 35 |
| $\frac{3}{4} \mathrm{x}_{3}{ }^{3} \mathrm{~S}$ | $13 \frac{1}{4}$ | $\frac{3}{4} \mathrm{x}$ | 18 | $\frac{3}{4} \times \frac{5}{3} \frac{5}{7}$ | 22 | $\frac{3}{4} \mathrm{x}$ - | 27 | $\frac{3}{4} \times \frac{1}{4}$ | 35 |
| ${ }_{8}^{7} \mathrm{E}_{3}{ }^{\frac{3}{2}}$ | $15^{\frac{1}{4}}$ | $\frac{7}{8} \times \frac{1}{8}$ | $20 \frac{1}{4}$ | ${ }_{8}^{7} \mathrm{~F}_{3} \mathrm{E}^{5}$ | 25 | $\frac{7}{8} \mathrm{x}^{\frac{3}{15}}$ | $30 \frac{1}{2}$ | $\frac{7}{8} \mathrm{x} \frac{1}{4}$ | 40 |
| $1 \times \frac{1}{8}$ | $23 \frac{3}{4}$ | 1x ${ }^{\frac{5}{32}}$ | $29 \frac{1}{2}$ | $1{ }^{\frac{3}{16}}$ | $35 \frac{1}{2}$ | $1 \times \frac{7}{3-2}$ | $42 \frac{1}{4}$ | $1 \times \frac{1}{4}$ | 47 |
| $1 \mathrm{x}^{\frac{5}{6}} 6$ | $58 \frac{1}{2}$ | $1 \frac{1}{8} \mathrm{x}_{1}{ }^{3} 6$ | $40 \frac{1}{2}$ | $1 \frac{1}{8} \times \frac{1}{4}$ | 54 | $1 \frac{1}{8} \mathrm{x}_{1}^{-5}{ }^{-1}$ | $67 \frac{1}{2}$ | $1 \frac{1}{8} \times \frac{3}{8}$ | 81 |
| $1 \frac{1}{4} \times \frac{1}{4}$ | 59 | $1 \frac{1}{4} x_{1} \frac{5}{6}$ | 74 | $1 \frac{1}{4} \times \frac{5}{8}$ | $88 \frac{1}{2}$ | $1 \frac{3}{81} x^{\frac{3}{8}}$ | 98 | $1 \frac{1}{2} \times \frac{3}{8}$ | 107 |
| $1 \frac{1}{2} \times \frac{7}{16}$ | 124 | $1 \frac{1}{2} \times \frac{1}{2}$ | 142 | $1 \frac{5}{8} \times \frac{1}{2}$ | 154 | $1 \frac{3}{4} \times \frac{1}{2}$ | 165 | $2 \times \frac{1}{2}$ | 190 |

Have a clean fire, and weld with equal parts of Borax, Salt and Sand.
RICHARDSON'S

Richardson's Trade Mar
A Maltese Cross, with the let-f
the standing of the Saws in the. Trade.
Hustrated Catalogue sent on application.

## Standard Sizes of Circular Saw Mandrels.

| No. |  |  | $\begin{gathered} 40 \\ 0 \\ 8 \\ 0 \\ \text { Hen } \end{gathered}$ | $\begin{gathered} \dot{\text { ® }} \\ \stackrel{\text { B }}{\vec{~}} \end{gathered}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | ins. |  | ns. |  |  |  |  |  | 1-16 in | 1 |
| 2 | 3 |  | : | ، | 3 | ${ }^{6}$ | 16 | " |  | 316 " | $1 \frac{1}{8}$ |
| 3 | $3{ }^{\frac{1}{2}}$ | " | $4 \frac{1}{2}$ | " | $3{ }^{1}$ | " | 18 | " |  | 5-16 ' | $1 \frac{1}{4}$ |
| 4 | 4 | " | 5 | 6 |  | 6 | 20 | 6 |  | 7-16 | $15-16$ |
| 5 | $4 \frac{1}{2}$ | " | $5 \frac{1}{2}$ | " | $4 \frac{1}{2}$ | '6 | 22 | " |  | 7-16 '6 | 1 5-16' |
| 6 | 5 | " | 6 | " | 5 | " | 24 | '6 |  | 7-16 ' | $1 \frac{3}{8}$ |
| 7 | $5{ }^{\frac{1}{2}}$ | " | $6 \frac{1}{2}$ | " | 51. | /6 | 26 | '6 |  | 7-16 ' | $1 \frac{3}{8}$ |
| 8 | 6 | " | 7 | " | 6 | " | 28 | " |  | 9-16 ' | $1{ }^{\frac{1}{2}}$ |
| 9 | 7 | " | 8 | " | 6 | " | 32 | " |  | 11-16' | $1 \frac{5}{8}$ |
| 10 | 8 | ، | 8 | " | 6 | " | 36 | ، |  | 13-16 ${ }^{\text {' }}$ |  |

## When Ordering Circular Saws,

The following directions should be explicitly given :
Diameter of Saw in inches.
'Chickness (or Gauge) of Saw at Rim.
Thickness (or Gauge) of Saw at Centre.
Log side, right or left hand, saw cutting toroards you.
Number of Teeth in Saw.
Kind and number of Tooth.
Size of mandrel hole.
Size of pin hole.
Distance between pin holes from centre to centre.

## Standard Gauges for Circular and Mill Saws.

| Gauge. |  |  |  |
| :---: | :---: | :---: | :---: |
| No. 4. |  | ch, | scant. |
| " 5 | 7-32 |  |  |
| ، 6. | 3-16 | 6 | f!11. |
| " 7. | 3-16 | " | scant. |
| ، 8.. | 5-32 | ، |  |
| " 9. | 5-32 | " | scant. |
| " 10. | $\frac{1}{8}$ | " | fuil. |

Gauge.
No. 11...... $\frac{1}{8}$ inch, scant.
" $12 \ldots . .$. . $3-32$ " full.
" $13 . . . . . .3-32$ " scant.
" $14 \ldots . .$. 5-64 " ${ }^{6}$ full.
" 15....... 5-64 :: scant.
" 16....... 1-16 ، full.

## Kincyersons parivi sixi ion ilize

The most perfect Anti-Priction Ilanger in the Market,
 steel throughout, except the wheel, which has a steel axle, Itwillnotbreak Itispractically free from wear, It is almost noiseless in action. It requires no oil. It has a broad bearing ou the door and keeps in line. It is by far the most durable. It may be used with any track. It is always in order.

IANE:S PATENT TEACK
Is made of steel and is easily put in position. Catches and holds no snow or ice. Door hung thereon cannot jump the track. Is not subject to decay. Requires no fitting, but i, ready at once. May be used with hansers of other manufac.ure.

## LANE'S MEASURING FAUCET.

 PRICE, \$3.00.For Light or Heavy Molasses, Oils, Varnishes or other Fluids.
We warrant these Faucets to to be as represented, measuring correctly and working more eas. ily in heavy molasses than any Measuring Waucet in the market. No grocer can ufford to be with. out them, for they save time, and "time is money." 'They insure perfect cleanliness, requiring no tin measures or funnel to collect dirt and draw flies. They do not drip. They prevent all waste, as no molasses or other fluid can pass except when the crank is turned. They are the embodiment of simplicity, and consequently they are always in order. They work easily in the heaviest molasses. They are war ranted to measure correctly, according to U.S. Standard.


Manufactured Exclusively by エANE BROS., Poughkeepsie, N. Y. GENERAL AGENCY, JOFN H. GRAHAM \& CO., 113 Chambers St., New York.

# HOPKINS' HANDY NOTES AND QUERIES. 

## Standard Length of Cut of Hatchets and Bench Axes.

| Nos....................... ...... | 1 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| Shingling ...................... | $3 \frac{1}{2}$ |  | $3 \frac{7}{8}$ | $4 \frac{3}{8}$ inches. |
| Claw...... ...................... | $3 \frac{1}{2}$ |  | $3 \frac{7}{8}$ | $4 \frac{3}{8}$ inchts. |
| Half............................. | $3 \frac{1}{2}$ |  | $3 \frac{7}{8}$ | $4 \frac{3}{8}$ incle ${ }^{\text {a }}$. |
| Lath ............................. \| | 21 |  | $2 \frac{3}{4}$ | 3 inches. |


| No................. $14\|2\| l\|l\| l\|l\| l\|l\| c$ |
| :--- |
| Bench........... $\left.33^{\frac{3}{4}} \right\rvert\, 4 \frac{1}{2}$ |

## Weights of Washoe (Adz Eye) Picks. <br> RAILROAD PICK

| Nos............ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Weight....... | 5 | $5 \frac{1}{2}$ | 6 | 6 | 6 | 7 | $7 \frac{1}{2}$ | 8 |

MINING OR DRIETING PICKS.

| Nos ..... | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Weight | 3 | $3 \frac{1}{2}$ | 4 | $4 \frac{1}{2}$ | 5 | $5 \frac{1}{2}$ | 6 | $6 \frac{1}{2}$ | 7 |

POLI PICKS

| Nos..... | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Weight | $3 \frac{1}{2}$ | 4 | $4 \frac{1}{2}$ | 5 | $5 \frac{1}{2}$ | 6 | $6 \frac{1}{2}$ | 7 | $7 \frac{1}{2}$ lbs. | COAI PICKS.


| Nos ............. | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Weight........ | $3 \frac{1}{2}$ | 4 | $4 \frac{1}{2}$ | 5 | 6 | $6 \frac{1}{2}$ lbs. |

## Coes' (Genuine) Wrenches.

WILL TAKE NOTS OF the following Sizes:

| Size of Wrench | 4 | 6 | 8 | 10 | 12 | 10 | 18 | 21 | iu. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Size of Nuts.... | $\frac{1}{2}$ | $\frac{7}{8}$ | $1 \frac{1}{4}$ | $1 \frac{3}{4}$ | $2 \frac{1}{8}$ | $2 \frac{5}{8}$ | 3 | $4 \frac{1}{8}$ | nn. |

## Cast Steel Crowbars.

| Size ...................Inches | $\frac{3}{4}$ | $\frac{7}{8}$ | 1 | $1 \frac{1}{8}$ | $1 \frac{1}{4}$ | $1 \frac{3}{8}$ | $1 \frac{1}{2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Usual Weight.. .....Lbs. | 6 | 8 | 10 | 13 | 17 | 22 | 26 |
| Usual | Length......nnches | 44 | 48 | 152 | 55 | 58 | 66 |

## "WESTERN" FILES,

 BEST CAST STEEL FILES, WARRANTED TO BE UNEQUALLED IN THE MARKET,
## FOR SALE BY

Iron and Hardware Dealers
THROUGHOUT THE UNITED STATES AND OANADA.


All Descriptions of Files
MADE TO ORDER.

## WESTERNT FILE CO., Limited, BEAVER FALLS,

PENNSYLVANIA.



[^2]Established 1854.
Centennial Award 1878.
KEYSTONE WORKS.
George Griffiths. Louis Reichner, ur.
 MANUFACTURERS OF WOLID CAST STBEL Surrat, Spatar an Suma DRAINAGE TOOLS. Quality and Finish Guaranteed. All Qualities Socket Strap Shovols, Spades and Scoops. we make drain cleaners, all sizes.

We have reduced prices on Cast Steel Wire Potato Scoops. s12 Per dozen net. Malleable Iron Screening Scoops. \$ 15 PER DOZEN NET.

Shovel, Spade and Fork Handles, Coal Hods, Well Buckets, Chamber Pails, Ash Cans and Ash Barrels, Stove Shovels, Pokers, Pans, etc., all at
LOWEST MARKET PRICES.
Nos. 511,513 and 515 Loocisis Struet, PHILADELPHIA, Pa., U.S. A. SRID FOIR PRICE LIST.

HOPKINS' HANDY NOTES AND QUERIES.

## Molasses Gates.

| No.................. | 1 | 2. | 3 | 4 |  | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inside Diameter..... \| | 13-16 | 7/8 | $11 / 4$ | 13/8 |  | 11/2 |
| Bo1e................. | 1 | 1. $1 / 8$ | 13/8 | 15/8 |  | 13-16 |

## John Wilson's English Butcher Knives.

LENGTH OF BLADE OF EACH NO.


Eley Bros.' (" E. B.") Percussion Caps
ARE NUMBERED IN THIS MANNER:


## English Gun Gauge.

SIZES EXPRESSED IN PARTS OF AN INCH.

|  | Number. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bore. | 5 | 6 | 7 | 9 | 11 | 15 | 19 | 25 | 36 | 52 | 30 | 140 | 300 |
| Inch. | 1 | 15-16 | 7/8 | 13-16 | 3/4 | 11-16 | 5/8 | 9-16 | 1/2 | 7-16 | 3/8 | 5-1.6 | $3 / 4$ |

## The Sizes of Skates

COMPARE WITH SIZES OF SHOES AS FOLLOWS :


|  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## Plate and Bedstead Casters.

SIZE, IN INCEES, OF WHEELS OF EACH.

| Plate..........No | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size... | 7/8 | 1 | 11/8 | 12/4 | $13 / 8$ | $17-16$ | 1/2 |
| Bedstead, Old No. | 1\%\%.0 | 15\%.1 | 15/8.2 | 2 in 0 | 2 in 1 | 2 in 2 | 2 in heavy. |
| New ${ }^{66}$ | 101 | 102 | 103 | 104 | 105 | 108 | 107 |
| Sizo.............. | 13/8 | $11 / 2$ | 1\%8 | 13/4 | 178 | 2 | $2 \frac{1}{4}$ |

## Hatter's Size Measure.

To obtain the correct size cf the head, use a strip of paper-newspaper will co. Draw it tightly aronid the largest part of the head, and have the ends just meet. Then measure the length of the paper and the figures below will give you the size according to hatter's measure. An eighth of an inch either way will make no differenee. These measures will answor for any style of hat or cap made:


## TRAVERS BROTHERS,

107 dUANE ST., AND 16 THOMAS ST., N上析 YORI, MANUFACTURERS AND SOLE AGENTS FOR
 MEXICAN HAMMOCKS. Peerless Hammock Spreaders. ANCHOR HAMMOCK ROPES. Liberty Mills Twires anll conls. HaRMONP MLELS TWME AND CORDS PEERIESSS SEA SLLAND TWINES. gem sea island and cotton twines. PEERLESS HAMMOCK HOOKS.

Agents for
THE SILVER LAKE COMPANY'S SOLID BRAIDED

# STFSH COORS RIMD LIIESE. 

Office and Salesrooms,
107 dUaNE STREET AND IG THOMAS STREET, NEW YORK CITY.


PROPORTIONS FOR UNITED STATES STANDARD SCREW THREADS AND NUTS.

From Hoopes \& Townsend.

| $\begin{aligned} & \text { Diam. } \\ & \text { of } \\ & \text { Screw. } \end{aligned}$ | Thr'ads per inch. | Diamet'r at root of Thread. | Short Diame'tr | Long Diamet'r | Long <br> Diamet'r | Thickness. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{4}$ | 20 | . 185 | $\frac{1}{2}$ | $\frac{37}{64}$ | $\frac{7}{10}$ | $\frac{1}{4}$ |
| $\frac{5}{10}$ | 18 | . 240 | $\frac{1}{3} \frac{19}{2}$ | $\frac{11}{16}$ | $\frac{1}{10}$ | ${ }^{5}$ |
| $\frac{3}{8}$ | 16 | . 294 | $\frac{11}{16}$ | $\frac{51}{64}$ | ${ }^{6} 6$ |  |
| $\frac{7}{16}$ | 14 | . 344 | $\frac{2}{3} \frac{1}{2}$ | ${ }^{\frac{9}{10}}$ | $1{ }^{\frac{7}{64}}$ | ${ }^{7}$ |
| $\frac{1}{2}$ | 13 | . 400 |  |  | $1{ }^{1 \frac{1}{4}}$ |  |
| $\frac{9}{16}$ | 12 | . 454 | $\frac{31}{32}$ | $1 \frac{1}{8}$ | $1{ }^{2} \frac{3}{4}$ | $\frac{9}{16}$ |
| $\frac{5}{8}$ | 11 | . 507 | $1 \frac{1}{16}$ | $1 \frac{7}{32^{2}}$ | $1 \frac{1}{2}$ |  |
| 4 | 10 | . 620 | $1 \frac{1}{4}$ | $1{ }_{1}{ }^{\text {\% }}$. | $1{ }^{\frac{4}{6}}{ }^{\text {a }}$ | 4 |
| $\frac{7}{8}$ | 9 | . 731 | $1{ }^{\frac{7}{10}}$ | $1{ }^{21}{ }^{\frac{1}{2}}$ | $2 \frac{1}{32}$ | $\frac{7}{8}$ |
| 1 | 8 | . 837 | 15 | 17 | $2 \frac{1}{6} \frac{9}{4}$ | 1 |
| $1 \frac{1}{8}$ | 7 | . 940 | $1{ }_{1}^{13} 6$ | $2 \frac{3}{3}$ - | 29.9 | $1 \frac{1}{8}$ |
| $1 \frac{1}{4}$ | 7 | 1.065 | 2 | $2{ }^{\frac{5}{16}}$ | $2{ }^{5} \frac{5}{4}$ | $1 \frac{1}{4}$ |
| $1 \frac{3}{8}$ | 6 | 1.160 | $2 \frac{3}{16}$ | $2{ }^{\frac{17}{3}}$ | $3{ }_{3}{ }_{3}{ }^{2}$ | $1 \frac{3}{8}$ |
| $1 \frac{1}{2}$ | 6 | 1.284 | $2 \frac{3}{8}$ | $2 \frac{3}{4}$ | $3{ }_{6} \frac{3}{4}$ | $1 \frac{1}{2}$ |
| $1 \frac{5}{8}$ | $5 \frac{1}{2}$ | 1.389 | $2{ }^{9} 9$ | $2{ }^{3} \frac{1}{3} \frac{1}{2}$ | ${ }^{35}$ | $1{ }^{\frac{5}{8}}$ |
| $1 \frac{3}{4}$ | 5 | 1.491 | $2 \frac{3}{4}$ | $3{ }^{3} 6$ | $3 \frac{57}{64}$ | $1 \frac{3}{4}$ |
| $1 \frac{4}{8}$ | 5 | 1.616 | $2{ }^{15}$ | $3 \frac{13}{\frac{1}{2}}$ | $4{ }^{5} 5$ | $1{ }^{7}$ |
| 2 | $4 \frac{1}{2}$ | 1.712 | $3 \frac{1}{8}$ | $3 \frac{5}{8}$ | $4{ }^{2} \frac{2}{4}$ | 2 |
| $2{ }_{4}^{1}$ | $4 \frac{1}{2}$ | 1.962 | $3 \stackrel{1}{2}$ | $4 \cdot \frac{1}{16}$ | $44_{6}^{61}$ | $2 \frac{1}{4}$ |
| $2 \frac{1}{2}$ | 4 | 2.176 | 37 | $4 \frac{1}{2}$ | $5 \frac{31}{64}$ | $2 \frac{1}{2}$ |
| $2{ }_{4}$ | 4 | 2.426 | $4 \frac{1}{4}$ | $4{ }^{2}{ }^{2} 9$ | 6 | 23 |
| 3 | $3 \frac{1}{2}$ | 2.629 | $4 \frac{5}{8}$ | $5 \frac{3}{8}$ | $6{ }^{\frac{1}{3} 7}$ | 3 |
| $3 \frac{1}{4}$ | $3 \frac{1}{2}$ | 2.879 | 5 | $5 \frac{1}{1}{ }^{3}$ | 7-1 $\frac{1}{6}$ | $3 \frac{1}{4}$ |
| $3 \frac{1}{2}$ | $3 \frac{1}{4}$ | 3.100 | $5 \frac{3}{8}$ | $6{ }_{6}^{-7}$ | $7 \frac{3}{6} 4$ | $3 \frac{1}{2}$ |
| $3{ }_{4}$ | 3 | 3.317 | $5 \frac{3}{4}$ | $6{ }^{21} 1$ | $8 \frac{1}{8}$ | $3{ }_{4}^{3}$ |
| 4 | 3 | 3.567 | $6 \frac{1}{8}$ | $7{ }^{3}{ }^{3} 2$ | 881 | 4 |

BLOCK TIN PIPE.

| Caliber. | Wt. per ft |  | Caliber. | Wt. per ft |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | LBS. | oz. |  | LBS. | oz. |
| $\frac{1}{8}$ in. strong ...... |  | $2 \frac{1}{2}$ | 1 in. double ex-strong |  | 15 |
| $\frac{1}{4}$ inch ex-strong. |  | 5 | $\frac{5}{8}$ in. ex-strong. |  | 9 |
| double ex-strong. |  | 6 | double ex-stron |  | 14 |
| $\frac{5}{16}$ in. dou'le ex-strong |  | $6 \frac{1}{2}$ | $\frac{3}{4} \mathrm{in}$. ex-strong. |  | 11 |
| $\frac{3}{8}$ in. ex-strong...... |  | 6 | double ex-strong | 1 | 0 |
| double ex-strong.. |  | 8 | 1 in . double ex-strong |  | 14 |
| $\frac{1}{2}$ in. strong........... |  | $10^{6 \frac{1}{2}}$ | double ex-strong.... | 1 | 4 |

## CAST IRON BALLS.-WEIGHT.



# ques anne screen coi, 

## BURLINGTON, VERMONT,

MANUFACTURERS OF THE



This is a new departure in adjustable screens and is free from many objections found in others. It is the only doubleface screen, and equally well finished on both sides. It has a box panel, and. can be adjusted without the friction noticeable in all other adjustable screens.

They are made of Pine and Bass. Wood stained in imitation of Black Walnut, with thimbles on one side.

Or made of Maple or Birch stained in imitation of Black Walnut, finished in hard oil or shellac, with lifts and faceplates.
Also stained in imitation of Cherry or Natural Wood and cabinet finished, with lifts and face plates.

The Side Sticks are $\frac{7}{8} \times 2$ inches. End $1 \frac{7}{8} \times 1$. inch. Stained in imitation of Black Walnut.

Each Set is composed of Frame Slide and Strips to tack over wire.

These Frames are beaded and are slit 6 inches on one end to facilitate fitting to any window, by cutting if necessary.

These Sides are grooved the entire length, doing away with necessity of cutting grooves in end of top and bottom Sticks as in other makes.
Coniers and Sticks for Wiriows and Doors.
 Q

## HOPKINS' HANDY NOTES AND OUERIES.

## TABLE

SEOWING THE AVERAGE NUMBER OF COLD PRESSED NUTS IN A KEG. 150 LBS EACH, SQUARE AND HEXAGON, OF STANDARD SIZES,

As adopted by "The Association of Bolt and Nut Manufacturers of the U. S."

| Width. | Thickness. | Hole. | Bolt. | No. of Square. | No. of Hexagon |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11-32 | 5-32 | 3-32 | 1-8 | 45,000 |  |
| 13-32 | 3-16 | $5-32$ | 3-16 | 22,500 |  |
| 1-2 | 1-4 | 7-32 | 1-4 | 10,000 | 10,500 |
| 5-8 | 5-16 | 9-32 | 5-16 | 5,106 | 6,666 |
| 3-4 | 3-8 | 11-32 | 3-8 | 2,727 | 4,528 |
| 7-8 | 7-16 | 13-32 | 7-16 | 1,904 | 2,057 |
| 7-8 | 1-2 | 7-16 | 1-2 | 1,695 | 1,890 |
| 1 | 1-2 | 7-16 | 1-2 | 1,218 | 1,538 |
| 1 1-8 | 1-2 | 1-2 | 4-16 | 1,016 | 1,245 |
| 1 1-8 | -5-8 | 9-16 | 5-8 | 885 | 957 |
| $1 \quad 1-4$ | 5-8 | 9-16 | 5-8 | 638 | 740 |
| $1 \quad 3-8$ | 3-4 | 21-32 | 3-4 | 450 | 555 |
| 1 1-2 | 3-4 | 21-32 | 3-4 | 368 | 430 |
| 1. $5-8$ | 7-8 | 25-32 | 7-8 | $\underline{2} 60$ | 270 |
| 1 3-4 | 7-8 | 25-32 | 7-8 | 243 | 252 |
| 13 -4 | 1 | 7-8 | 1 | 249 | 257 |
| 2 | 1 | 7-8 | 1 | 163 | 204 |
| 2 | 1 1-8 | 15-16 | 1 1-8 | 143 | 168 |
| $2 \quad 1-4$ | 1 1-8 | 15-16 | $11-8$ | 109 | 150 |
| 2 1-4 | 1 3-8 | 1 1-16 | $13-8$ | 85 | 120 |
| $2 \quad 1-2$ | 1 1-4 | 1 1-16 | 1 1-4 | 84 | 93 |
| $\because \quad 3-4$ | $13-8$ | $1 \quad 3-16$ | 13 -8 | 55 | 60 |
| 3 | 1 1-2 | 1 5-16 | 1 1-2 | 51 | 56 |
| 3 1-4 | $15-8$ | $1 \quad 7-16$ | 1 5-8 | 39 | 44 |
| 3) 1-2 | 1 3-4 | $1 \quad 9-16$ | $13-4$ | 32 | 35 |
| $\therefore 3-4$ | 1 7-8 | 1 11-16 | 1 7-8 | 28 | 30 |
| 4 | 2 | $113-16$ | 2 | 2) | 22 |

TAPER AND PLUG TAPS.
Standard Number of Threads to the Inch.

| Size. Inches. | RIGHt HAND. |  |  |  |  |  |  |  | LEFT HAND. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{\frac{1}{4}}^{3}$ |  |  |  |  | 30 | 32 |  |  |  |  |
| ${ }_{\frac{1}{1}}{ }^{3}$ |  |  | 16 | 24 18 | 26 20 | 28 22 | 24 | 26 |  |  |
| $\frac{5}{16}$ |  | 14 | 16 | 18 | 20 | 22 |  |  |  |  |
| $\frac{3}{8}$ | 12 | 14 | 16 | 18 | 20 |  |  |  |  |  |
| ${ }^{7} 16$ | 10 | 12 | 14 | 16 | 18 |  |  |  | 14 |  |
| $\frac{1}{2}$ | 10 | 12 | 14 | 16 | 18 |  |  |  | 12 | 14 |
| $\frac{9}{16}$ |  | 12 | 14 |  |  |  |  |  | 12 |  |
| $\frac{5}{8}$ | 10 | 11 | 12 | 14 | 16 |  |  |  | 10 | 12 |
| $\frac{3}{4}$ | 7 | 8 | 9 | 10 | 12 | 14 |  |  | 10 | 12 |
| $\frac{7}{8}$ | 8 | 9 | 10 |  |  |  |  |  | 9 |  |
| 1 | 7 | 8 | 9 | 10 |  |  |  |  | 8 | 9 |
| $1 \frac{1}{4}$ | 6 | 7 | . 8 | 9 |  |  |  |  | 8 | 9 |
| $1 \frac{1}{2}$ | 6 | 7 | 8 |  |  |  |  |  | 6 | 7.8 |

## C. ․ GUTYOAT \& CO.,

## 99 Reade Street, New York:

Sole Agents for Middle and Southern States for

NASHUA LOCK CO.
LOCKWOOD MANUF'C CO.
H. B. IVES \& CO.

SOUTHWARK SCALE CO.
DIBBLE MANUF'C.CO.
N. E. BUTT CO.

WOODROUCH \& CLEMSON.

ARCADE FILE WORKS.
A. G. PECK \& CO.

HENRYCHENEY HAMMERCO.
W. HIGHTON \& SON.
C. J. KIMBALL \& SON.

ELWELL \& DOTY.
CORYELL FLINT PAPER CO.

And carrying a full line of Goods manufactured by

## THE PENN HARDWARE CO.

Also Representatives of American Screw Co.


## IT WILL PAY YOU

To send for our Illustrated Catalogue of
J̌ardmare Sprciallifes,
POST-HOLE DIGGERS, EXTENSION STEP LADDERS, TREF PROTECTORS BOYS' VELOCIPEDES.

We also manufacture the best line of

#  


The Chieftain Hay Rake Co.,

OFFICEAND WORKS, 188 TO 198 EAST TUSCAROWAS ST.,
P. O. BOX 2O7,

CANTON, OHIO.

## HOPKIIS' HANDY NOTES AND QUERIES.

## TABLE

Showing the Average Number of Washers in a Keg of 150 Pounds, of Each Standard Size.

AS ADOPTED BY
"The Association of Bolt and Nut Manufacturers of the United States."

| Diameter. | Size of Hole. | Thicknes Wire Gauge. | Size of Bolt | No. in 150 pounds. |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \frac{1}{2} \\ & y_{5}^{8} \\ & \frac{5}{8} \\ & \frac{3}{4} \\ & 1^{\frac{7}{8}} \\ & 11^{\frac{1}{4}} \\ & 11_{8}^{8} \\ & 11^{\frac{1}{2}} \\ & 1^{3} \\ & 22^{\frac{1}{4}} \\ & 2 \frac{1}{3} \\ & 2^{\frac{3}{4}} \\ & 3 \\ & 3 \frac{1}{2} \end{aligned}$ |  | No. 18 <br> " 16 <br> " 16 <br> " 14 <br> " 14 <br> " 12 <br> " 10 " 10 <br> " 9 <br> $\begin{array}{ll}\text { ، } & 9 \\ \because & 9 \\ \because & 9 \\ \text { " } & 9\end{array}$ | $\begin{aligned} & \frac{3}{16} \\ & \frac{1}{4} \\ & \frac{1}{4} \\ & \frac{1}{4} \\ & \frac{1}{16} \\ & \frac{3}{8} \\ & \frac{7}{7} \\ & \frac{1}{16} \\ & \frac{1}{2} \\ & \frac{9}{16} \\ & \frac{5}{16} \\ & \frac{3}{4} \\ & \frac{3}{4} \\ & \frac{9}{8} \\ & 1 \\ & 1 \frac{1}{8} \\ & 1 \frac{1}{4} \\ & 1 \frac{3}{8} \\ & \hline \end{aligned}$ | 80,000 <br> 34,285 <br> 18,500 <br> 10,550 <br> 7,500 <br> 4,500 <br> 3,850 <br> 2,500 <br> 1,600 <br> 1,300 950 <br> 700 <br> 550 450 |

## Standard Sizes of Heads for Bolts.

| Diam. of Bolt. | Square Head. |  | HexagonHead |  | Button Head. |  | Countersunk Head. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | wIDE. | тнICK. | WIDE. | тнick. | WIDE. | тнICk. | wIDE. | thice |
|  |  |  |  | $\begin{aligned} & \frac{1}{4} \\ & \frac{1}{5} \\ & \frac{1}{16} \\ & \frac{3}{8} \\ & \frac{7}{16} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{9}{16} \\ & \frac{5}{8} \\ & \frac{3}{4} \\ & \frac{3}{4} \\ & \frac{7}{8} \\ & 1 \\ & 1 \frac{1}{8} \\ & 1 \frac{1}{4} \end{aligned}$ | $\begin{aligned} & \frac{11}{16} \\ & \frac{1}{1} \\ & \frac{1}{7} \\ & \frac{7}{8} \\ & 1^{8} \\ & 1 \frac{1}{8} \\ & 1 \frac{1}{1} \\ & 1 \frac{1}{2} \\ & 1 \frac{13}{4} \\ & 1 \frac{7}{8} \\ & 2 \frac{1}{8} \end{aligned}$ | $\frac{5}{3}$ $\frac{3}{3}-2$ $\frac{5}{12}$ $\frac{1}{1}$ $\frac{1}{4}$ 4 $\frac{5}{5}$ $\frac{1}{1}$ $\frac{7}{1}$ $\frac{1}{16}$ $\frac{1}{2}$ $\frac{5}{8}$ $\frac{3}{4}$ | $\begin{aligned} & \frac{1}{2} \\ & \frac{5}{8} \\ & \frac{5}{8} \\ & \frac{1}{15} \\ & \frac{3}{4} \\ & \frac{7}{8} \\ & \frac{15}{1} \\ & 1 \frac{1}{8} \\ & 18 \\ & 1 \frac{3}{8} \\ & 1 \frac{1}{2} \end{aligned}$ |  |





## THE PUBLISHERS

having made every effort to make this Book an acceptable gift to the Dealer to whom it is sent, would be pleased to receive a Postal Card acknowledgment of its having safely arrived.

## 促 <br> HOPKIIS' HANDY NOTES AND QUERIES.

APPROXIMATE WEIGHTS OF STRAP AND T HINGEG.
Feight per dozen. Furnished by Stanley Works. HEAVY STRAP HINGES.

| Size.... | 4 | 5 | 6 | 8 | 10 | 12 | 14 | 16 | ins. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Weight. | $63 / 4$ | $10^{4} 2$ | $191 / 2$ | $321 / 4$ | $551 / 4$ | $74 / / 2$ | $891 / 4$ | $1081 / 2$ | 1 bs. |

EエTRA HEAVY T HINGES.

| Size................ | 6 | 8 | 10 | 12 | 14 | 16 | jus. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Weight. | $20^{3 / 4}$ | $3 \pm 3 / 4$ | 54 | 78 | 831/4 | $873 / 4$ | 1 bs |

STRAP AND T HINGES ARE COUNTERSUNK FOR SCREWS.


## WROUGHT BUTTS-Countersunk for Screws. TABLE BUTT'S AND BACK FLAPS.

| Inches $\ldots \ldots \ldots \ldots \ldots \ldots$ | $7 / 8$ | 1 | $11 / 8$ | $11 / 4$ | $13 / 8$ | $11 / 2$ | $15 / 8$ | 1 | $1 / 4$ | $27 / 8$ | 2 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Size Screw | $\ldots \ldots \ldots \ldots \ldots$ | 6 | 6 | 7 | 7 | 7 | 7 | 8 | 8 | 9 | 9 | 9 |

## NARROW WROUGHT BUTTS.




LIGHT NARROW AND LIGHT LOOSE PIN.

LOOSE PIN OR BROAD.

| Size............... $\{\mid$ | $\begin{gathered} 2 \times 2 \\ \text { to } \\ 2 \frac{1}{1} \times 2 \end{gathered}$ | $\begin{gathered} 21 / 2 \times 21 / 2 \\ \text { to } \\ 3 \times 3 \\ \hline \end{gathered}$ | 3x31/2 | $\begin{gathered} 31 / 6 \times 3 \\ \text { to } \\ 41 / 2 \times 4 \end{gathered}$ | $\begin{array}{c\|} \hline 41 / 2 \times 41 / 2 \\ \text { to } \\ 5 / 2 \end{array}$ | $5 \times 5$ to 6x7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8crews.............. | 9 | 10 | 11 | 12 | 13 | 14 |

## CAST BUTTS

ARE COUNTERSUNK FOR SCREWS AS FOLLOWS: NARROW, FAST OR LOOSE JOINT.


## PARLIAMENT.

| Inch.. | $21 / 2$ to $31 / 2$ | $33 / 4$ and 4 | $41 / 2$ to $71 / 2$ | 8 and $81 / 2$ |
| :---: | :---: | :---: | :---: | :---: |
| Screw ... .............. | 8 | 10 | 11 | 13 | BROAD, FAST, AND LOOSE JOINT AND LOOSE PLN.



## C. P. LEGEETT MFPG. CO. OF N. J.

## OFFICE AND FACTORY:

201 to 207 East Jersey street, Elizabeth, N. J.
MANUFACTURERS OF
Porcelain, Jet and Wood


No Lead or Cement Used in Fastening Shanks and Knobs.

This is the only Knob now on the market that cannot possibly become detached or come off without breaking the knob. Highly endorsed and sold by the leading Hardware Houses of the United States and Canada.

COSTS IO MORE THAI ORDINARY KYOBS.


ASK YOUR DEALER FOR IT AND TAKE NO OTHER. Price-Lists on Application. C. P. LEGGETT MFG.CO. OF N.J.

## JANESS W. MEASON JR

MANUFACTURER OF

## |CE



SKATE STRAPS, TRIMMINGS, ETC.,
DOG COLLARS,
And all Kinds of Leather Goods.. NO. 75 CHAMBERS ST., - NEW YORK.

## WROUGHT BRASS BUTTS．

Width when Open，and Sizes of Screws Required．
width of brass butts，when open．

| Size．．．．．．．．．．．．．．．．．Inches | $\left.\frac{3}{4} \right\rvert\, \frac{7}{8}$ | 1 | $1 \frac{1}{8}$ | $1 \frac{1}{4}$ | 1䂙 |  |  | $1 \frac{3}{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Narrow ．．．．．．．．．．．．．Width | $\left.\frac{5}{8} \right\rvert\, \frac{5}{8}$ | $\frac{5}{8}$ | $\frac{3}{4}$ | $\frac{3}{4}$ | $\frac{7}{8}$ | $\frac{7}{2}$ | $\frac{7}{8}$ | $\frac{7}{8}$ |
| Middle ．．．． | $\frac{3}{4} \left\lvert\,{ }^{\frac{3}{4}}\right.$ | 3 | $\frac{7}{8}$ | $\frac{7}{8}$ | 1 | 1 | 1 | 1 |
| Broad．．．．．．．．．．．．．．．．．．．．． | $\left.\frac{7}{8} \right\rvert\, \frac{7}{8}$ | $\frac{7}{8}$ | 1 | 1 | $1{ }^{\frac{1}{8}}$ | $1 \frac{1}{8}$ | $1 \frac{1}{8}$ | $1 \frac{1}{8}$ |
| Desk | $\left.1 \frac{1}{4} \right\rvert\, 1 \frac{3}{8}$ | $1 \frac{5}{8}$ | $1 \frac{3}{4}$ | 1乭 | 2 | $2 \frac{1}{8}$ | $2 \frac{1}{4}$ | $2 \frac{1}{2}$ |
| Size．．．．．．．．．．．．．．．．．Inches | $\left.1 \frac{7}{8} \right\rvert\, 2$ | ｜ $2 \frac{1}{4}$｜ | $2 \frac{1}{2}$ | $2 \frac{3}{4}$ | 3 ． | $3 \frac{1}{4}$｜ | $3 \frac{1}{2}$ |  |
| Narrow ．．．．．．．．．．．．．Width | $1{ }^{1} 1$ | $11 \frac{1}{8}$ | $1 \pm 1$ | 1렬 | 15 | $1 \frac{3}{4}$ | 2 |  |
| Middle | $1 \frac{1}{8} \left\lvert\, 1_{8}^{\frac{1}{8}}\right.$ | ｜ $1 \frac{1}{4}$｜ | $1 \frac{3}{8}$ | $1 \frac{1}{2}$｜ | $1 \frac{3}{4}$ | $1 \frac{7}{8}$ | $2 \frac{1}{8}$ |  |
| Broad．．．．．．．．．．．．．．．．．．．．．．．． | $1 \frac{1}{4} \left\lvert\,{ }^{\frac{1}{4}}\right.$ | ｜ 13 | $1 \frac{1}{2}$｜ | 1䂞 | $1{ }^{\frac{7}{8}}$ | 2 | $2 \frac{1}{4}$ |  |
| Desk ．．．．．．．．．．．．．．．．．．．．．．．． | $\left.2 \frac{3}{4} \right\rvert\, 3$ | ．． | $\ldots$ | $\ldots$ | ． | $\ldots$ | $\ldots$ | ． |

BRASS EUTTS ARE COUNTERSENK FOR SCREWS AS FOLLOWS ：

| Size．．．．．．．．．．．．．．．．．．．Inch | $\frac{1}{2}\left\|\frac{3}{4}\right\| \frac{7}{8}\|1\| 1 \frac{1}{8}\left\|1 \frac{1}{4}\right\| 1 \frac{3}{8}\left\|1 \frac{1}{2}\right\|$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Narrow：．．．Size of Screw | 0 | $\mid 1$ | 1 | 2 | 2 | 3 | 4 |  | 4 |
| Middle | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 4 |
| Broad．． | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 4 |
| Desk | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 |
| Size．．．．．．．．．．．．．．．．．．．Inch | $1 \frac{3}{4}$ | 178 | 2 | 21 ${ }^{\frac{1}{4}}$ | $2 \frac{1}{2}$ | $2 \frac{3}{4}$ | 3 | $3 \frac{1}{4}$ | 3 |
| Narrow．．．．Size of Screw | 4 | 5 | 5 | 5 | 6 | 6 | 7 | 7 | 8 |
| Middle | 4 | 5 | 5 | 5 | 6 | 6 | 7 | 7 | 8 |
| Broad． | 4 | 5 | 5 | 5 | 6 | 7 | 7 | 7 | 8 |
| Desk | 6 | 6 | 7 |  | ．． |  |  |  |  |

## EMERY AND CORUNDUM

are ranked or graded as follows：

| Nos． | $8-10$. | Represents a | Wood rasp． |
| :---: | :---: | :---: | :---: |
| ＂ | 16－20． | ＂ | Rough file． |
| ＂ | 24－30． | ．${ }^{\prime}$ | Middle cut file． |
| ＂ | 36－40． | ．${ }^{\prime}$ | Bastard cut file． |
| ＂ | 46－60． | ＂ | Second cut file． |
| ＂ | 70－80． | ＂ | Smooth cut file． |
| ＂ | 90－100． | ＂ | Superfine cut file． |
| ＂ | 120－FFF | ． | Dead smooth file． |

## Baeder \＆Adamson＇s Emery Paper and Cloth compare with grade as follows：



## MNOMTGOMNEET \& CO.,

 IMPORTERS OF
## stujs Files Tonls dind stepl

 GROBET SWISS FILES, Chesterman's Measures, HUBERT'S FRENCH EMERY PAPER, HORSE SHOE MAGNETS, ETC.W. Smithe Son's Coieibutaded Music Wire,

French Sheet Steel $3 \frac{1}{4}$ in. Wide from 4 to 65-Thousandths.


Machinists', Silversmiths', Jewelers', Die Sinkers' and Sewing Machine Manufacturers'

## 

105 FULTON STREET, NEW YORK.

## THE CARVER'S FRIEND.



## SOLID EMERY KNIFE-SHARPENER.

Acknowledged by everyone to be
The VERY BEST ARTICLE OF ITS KIND in Use To-Day.

> A Few Strokes will Give the Dullest Knife a Keen Edge, which Every Housekeeper will Appreciate.

## HANDY FOR THE TABLE OR KITCHEN USE.

Made of the Best Turkish Emery, with a steel wire in the center, and will LAST FOR YEARS. The Discount to the Trade is LIBERAL. Sample sent on receipt of price.
For a Fine Cocobola Handle, 85c.; or with Applewood Handle, 60c.
For sale by Jobbers generally throughout the United States. Mention this Book.
W. H. PARKIN,

11 South Water Street, CLEVELAND, O.

## HOPKINS' HANDY NOTES AND QUERIES.

## different Standards for wire gajge in use

## IN THE UNITED STATES.

Dimensions of Sizes, in Decimal Parts of an Inch.

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000000 |  |  | . 46 |  |  |  | 000000 |
| 00000 |  |  | . 43 | . 45 |  |  | 00000 |
| 0000 | . 46 | . 454 | . 393 | 4 |  |  | 0000 |
| 000 | . 40964 | . 425 | . 362 | . 36 | . 3586 |  | 000 |
| 00 | . 3648 | . 38 | . 331 | . 33 | . 3282 |  | 00 |
| 0 | . 32495 | . 34 | . 307 | . 305 | . 2994 |  | 0 |
| 1 | . 2893 | . 3 | . 283 | . 285 | . 2777 |  | 1 |
| 2 | . 25763 | . 284 | . 263 | . 265 | . 2591 |  | 2 |
| 3 | . 22942 | . 259 | . 244 | . 245 | . 2401 |  | 3 |
| 4 | . 20431 | . 238 | . 225 | . 225 | . 223 |  | 4 |
| 5 | . 18194 | . 22 | . 207 | . 205 | . 2047 |  | 5 |
| 6 | . 16202 | . 203 | . 192 | . 19 | . 1885 |  | 6 |
| 7 | . 14428 | . 18 | . 177 | . 175 | . 1758 |  | 7 |
| 8 | . 12849 | . 165 | . 162 | . 16 | . 1605 |  | 8 |
| 9 | . 11443 | . 148 | . 148 | . 145 | . 1471 |  | 9 |
| 10 | . 10189 | . 134 | . 135 | . 13 | . 1351 |  | 10 |
| 11 | . 090742 | . 12 | . 12 | . 1175 | . 1205 | .... | 11 |
| 12 | . 080808 | . 109 | . 105 | . 105 | . 1065 | .... | 12 |
| 13 | . 071961 | . 095 | . 092 | . 0925 | . 0928 |  | 13 |
| 14 | . 064084 | . 083 | . 08 | . 08 | . 0816 | . 083 | 14 |
| 15 | . 057068 | . 072 | . 072 | . 07 | . 0726 | . 072 | 15 |
| 16 | . 05082 | . 065 | . 063 | . 061 | . 0627 | . 085 | 16 |
| 17 | . 045257 | . 058 | . 054 | . 0525 | . 0546 | . 058 | 17 |
| 18 | . 040303 | . 049 | . 047 | . 045 | . 0478 | . 049 | 18 |
| 19 | . 03589 | . 042 | . 041 | . 04 | . 0411 | . 04 | 19 |
| 20 | . 031961 | . 035 | . 035 | . 035 | . 0351 | . 035 | 20 |
| 21 | . 028462 | . 032 | . 032 | . 031 | . 0321 | . 0315 | 21 |
| 22 | . 025347 | . 028 | . 028 | . 028 | . 029 | . 0295 | 22 |
| 23 | . 022571 | . 025 | . 025 | . 025 | . 0261 | . 027 | 23 |
| 24 | . 0201 | . 022 | . 023 | . 0225 | . 0231 | . 025 | 24 |
| 25 | . 0179 | . 02 | . 02 | . 02 | . 0212 | . 023 | 25 |
| 26 | . 01594 | . 018 | . 018 | . 018 | . 0194 | . 0205 |  |
| 27 | . 014195 | . 016 | . 017 | . 017 | . 0182 | . 01875 | 27 |
| 28 | . 012641 | . 014 | . 016 | . 016 | . 017 | . 0165 | 28 |
| 29 | . 011257 | . 013 | . 015 | . 015 | . 0163 | . 0155 | 29 |
| 30 | . 010025 | . 012 | . 014 | . 014 | . 0156 | . 01875 | 30 |
| 31 | . 008928 | . 01 | . 0135 | . 013 | . 0146 | . 01225 | 31 |
| 32 | . 00795 | . 009 | . 013 | . 012 | . 0136 | . 01125 | 32 |
| 33 | . 00708 | . 068 | . 011 | . 011 | . 013 | . 01025 | 98 |
| 34 | . 006304 | . 007 | . 01 | . 01 | . 0118 | . 0095 | 34 |
| 35 | . 005614 | . 005 | . 0095 | . 0095 | . 0109 | . 009 | 35 |
| 36 | . 005 | . 004 | . 009 | . 009 | . 01 | . 0075 | 36 |
| 37 | . 004453 |  | . 0085 | . 0085 | . 0095 | . 0065 | 37 |
| 38 | . 003965 |  | . 008 | . 008 | . 009 | . 00575 | 38 |
| 39 | . 003531 | ... | . 0075 | . 0075 | . 0083 | . 005 | 89 |
| 40 | . 003144 | .... | . 007 | . 007 | . 0078 | . 0045 | 40 |



Gold Medal, New Orleans, 1884-5, and Eight First-Class Awards. CHEAPER THAN WALL PAPER OR OIL PAINT.


Pure White and Beautiful Tints. Purifies and Beautifies.
O Will not Rub and Scale from the Wall.
$R$ Invaluable in Cleansing and Disinfecting Walls Impregnated with Germs of Disease.
Mixed in 5 -Minutes Ready for the Brush, by the $U$ addition of Water Only.
S An Inexperienced Person can use it.
E Five Pounds will Cover with a Good Body 500 E Square Feet, on a Hard-Finished Wall.

Ask for " JOHNSTON'S DRY SIZED KALSOMINE, ?
And see that you do not get any poor substitute. For sale by Paint, Drug and Hardware Dealers everywhere.
Dry Kalsomine and Fresco Paint Works, NOS. 25 AND 27 JOHN ST., BROOKLYN, N. Y.

## ROUND OR OVAL-HEAD IRON RIVETS.

Number of Rivets in One Pound.
APPROXIMATE.

| 'Size. | $\frac{3}{8}$ | 0 | $\frac{5}{16}$ | 1 | 2 | 3 | $\frac{1}{4}$ | 4 | 5 | 6 | 3 36 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{3}{8}$ |  |  |  |  |  |  |  |  |  | 154 | 188 | 221 | 256 | 334 |
| 考 | 32 | 42 | 51 | 57 | 65 | 75 | 80 | 89 | 108 | 131 | 159 | 185 | 215 | 278 |
| 产 | 29 | 37 | 45 | 50 | 57 | 67 | 70 | 78 | 94 | 114 | 138 | 158 | 185 | 238 |
| $\frac{3}{4}$ | 26 | 33 | 41 | 45 | 51 | 59 | 63 | 70 | 84 | 101 | 122 | 139 | 163 | 208 |
| $\frac{7}{8}$ | 24 | 30 | 37 | 41 | 46 | 54 | 57 | 63 | 75 | 91 | 109 | 123 | 145 | 185 |
| 1 | 22 | 28 | 34 | 37 | 42 | 49 | 52 | 57 | 68 | 82 | 98 | 111 | 131 | 166 |
| $1 \frac{1}{8}$ | 20 | 26 | 31 | 34 | 39 | 45 | 47 | 53 | 63 | 75 | 90 | 101 | 119 | 151 |
| $1{ }^{\frac{1}{4}}$ | 19 | 24 | 29 | 32 | 36 | 42 | 44 | 49 | 58 | 69 | 83 | 93 | 109 | 138 |
| $1{ }^{3} 8$ | 18 | 22 | 27 | 29 | 33 | 39 | 41 | 45 | 54 | 54 | 76 | 86 | 101 | 127 |
| $1 \frac{1}{8}$ | 17 | 21 | 25 | 28 | 31 | 37 | 38 | 42 | 51 | 59 | 71 | 80 | 94 | 119 |
| $1{ }_{4}^{3}$ | 15 | 18 | 22 | 24 | 27 | 33 | 34 | 40 | 44 | 55 | 63 | 70 | 82 | 104 |
| 2 | 13 | 17 | 20 | 23 | 25 | 29 | 30 | 35 | 40 | 47 | 56 | 62 | 73 | 92 |
| $2 \frac{1}{4}$ | 12 | 15 | 18 | 19 | 22 | 27 | 28 | 32 | 36 | 42 | 50 | 56 | 66 | 83 |
| $2 \frac{1}{2}$ | 11 | 14 | 17 | 18 | 20 | 24 | 25 | 29 | 33 | 39 | 46 | 50 | 60 | 75 |
| $2{ }^{\frac{3}{4}}$ | 10 | 13 | 15 | 17 | 19 | 22 | 23 | 26 | 30 | 36 | 42 | 46 | 55 | 67 |
| 9 | 9 | 12 | 14 | 15 | 17 | 21 | 22 | 24 | 28 | 33 | 39 | 43 | 51 | 64 |
| $3 \frac{1}{4}$ | $8 \frac{1}{2}$ | 11 | 13 | 14 | 16 | 19 | 20 | 23 | 26 | 31 | 36 | 40 | 47 | 59 |
| $3 \frac{1}{2}$ | 8 | $10 \frac{1}{2}$ | 12 | $13 \frac{1}{2}$ | 15 | 18 | 19 | 21 | 24 | 29 | 34 | 38 | 44 | 55 |
| $3 \frac{3}{4}$ | $7 \frac{1}{2}$ | $9 \frac{3}{4}$ | $11 \frac{3}{4}$ | $12 \frac{3}{4}$ | 14 | 17 | 18 | 20 | 23 | 27 | 32 | 35 | 41 | 52 |
| 4 | $7 \frac{1}{4}$ | $9 \frac{1}{4}$ | 11 | 12 | 13 | 16 | 17 | 18 | 21 | 25 | 30 | 33 | 38 | 49 |
|  | 7 |  | $10 \frac{1}{2}$ | $11 \frac{1}{4}$ | $12 \frac{3}{4}$ | 15 | 16 | 17 | 20 | 24 |  |  |  |  |
| $4 \frac{1}{2}$ | $6 \frac{1}{2}$ | $8 \frac{1}{4}$ | 10 | $10 \frac{3}{4}$ | 12 | 14 | 15 | 16 | 19 | 23 |  |  |  |  |
| $4 \frac{3}{4}$ | $6 \frac{1}{4}$ | 8 | $9 \frac{1}{4}$ | 10 | $11 \frac{1}{2}$ | $13 \frac{3}{4}$ | $14 \frac{3}{4}$ | $15 \frac{3}{4}$ | 18 | 22 |  |  |  |  |
| 5 | 6 | $7 \frac{1}{2}$ | 9 | $9 \frac{3}{4}$ | 11 | 13 | 14 | 15 | 17 | 21 |  |  |  |  |
| $5 \frac{1}{4}$ | $5 \frac{3}{4}$ | $7 \frac{1}{4}$ | $8{ }_{2}$ | $9 \frac{1}{4}$ | $10 \frac{1}{2}$ | $12 \frac{1}{2}$ | $13 \frac{1}{2}$ | $14 \frac{1}{2}$ | $16 \frac{1}{2}$ | 20 |  |  |  |  |
| $5 \frac{1}{3}$ | $5 \frac{1}{2}$ | 7 | $8 \frac{1}{4}$ | 9 | 10 | 12 | 13 | 14 | 16 | 19 |  |  |  |  |
| $5 \frac{3}{4}$ | $5 \frac{1}{4}$ | 63 | $7 \frac{3}{4}$ | $8 \frac{1}{2}$ | $3 \frac{1}{2}$ | $11 \frac{1}{2}$ | $12 \frac{1}{2}$ | 131 ${ }^{\frac{1}{2}}$ | 15 | 18 |  |  |  |  |
| 6 | 5 | $6 \frac{1}{2}$ | $7 \frac{1}{2}$ | $8 \frac{1}{4}$ |  | 11 | 12 | 13 | 14 | 17 |  |  |  |  |

## SHRINKAGE OF CASTINCS.

In making allowance for shrinkage in casting, pattern-makers understand that different shapes will shrink differently. The standard table of allowance for shrinkage in use in the best shops of the country is as follows:

For Loam Castings........................... ${ }_{1}^{1}$ inch per foot.
" Green Sand Castings.................. $\frac{1}{10}$ inch per foot.
" Dry Sand Castings..................... $\frac{1}{10}$ inch per foot.
" Brass Castings.......................... $\frac{3}{16}$ inch per foot.
" Copper Castings........................ ${ }^{\frac{3}{6}}$ inch per foot.
" Bismuth Castings......................5 $3^{\frac{5}{2}}$ inch per foot.
": Tin Castings............................ $\frac{1}{4}$ inch per foot.
"، Zinc Castings.............................5. ${ }^{\frac{5}{6}}$ inch per foot.
-، Lead Castings............................ $\frac{5}{16}$ inch per foot.

# JOHN H. GRAHAM \& CO, <br> <br> HARDWARE MANUFACTURERS' AGENTS. 

 <br> <br> HARDWARE MANUFACTURERS' AGENTS.}

## All Goods at Factory Prices.

P.-O. Box 1042.

113 Chambers St. and 95 Reade St., New York.

## AGENT'S AS FOLLOWS:

AMERICAN MACHINE CO.,
Freezers, Wringers, Fluting Machines, \&c. LANE BROS.,

Grocer's Coffee Mills, Self-Measuring Faucets and Lane's Hangers and Track.
HENRY DISSTON \& SONS,
Saws, Tools, Files, \&c.
HARTFORD HAMMER CO.,
Hammers Forged from Solid Cast Steel.
NEW HAVEN COPPER CO.,
Cast Steel Augers and Bits, \&c.
AUBURN TOOL CO.,
Bench and Fancy Planes, all kinds.
GEORGE M. EDDY \& CO.,
Measuring Tapes. Largest line in the world.
LORING \& PARKS,
Tacks and Rivets.
HOBART B. IVES \& CO.,
Sash Locks, Door Bolts, \&c.
QUEEN ANNE SCREEN CO.,
Extension Screens, Window Sticks and Corners, \&c.
BARTON BELL CO.,
Hand, House, Car and Sheep Bells, Sleigh Bells, \&c.
DOUBLE-POINTED TACK CO.,
Double-Pointed Tacks, Blind Staples, Spring Staples, \&c.
UNITED STATES CORD CO.,
Braided Sash Cord, \&c.
ROMER \& CO.,
Night Latches, Iron and Brass Padlocks.
BAEDER FLINT PAPER CO.,
Flint Paper, Emery Cloth, \&c.
AMIDON \& BASTEDO,
Braces, \&c.
E. S. HOTCHKISS,

Hotchkiss Rat Killers, Metallic Mouse Traps.
A. G. COES \& CO.,

Coes' Genuine Screw Wrenches.
IRON CITY TOOL WORKS,
Vises, Picks, Mattocks, Grul Hoes, Sledges, \&c.
HENRY KNICKERBACKER,
Scythes, Grass Hooks, Axes, Hatchets and Tools.
SEYMOUR SMITH AND SON,
Pruning Shears, Breast Drills, Bull Rings, \&c.
DERBY \& BALL,
Scythe Snaths.
CHAPIN BOLT \& NUT CO., Carriage Bolts, Machine Bolts, Lag Screws, \&c.
AMERICAN SCREW CO.,
Wood Screws, \&c.
WATERTOWN THERMOMETER CO.,
Thermometers, Storm Glasses, \&c.

JONES OF BINGHAMTON, Scales, \&c.
LAWRENCE CURRY COMB CO., Curry Combs.
T. C. RICHARDS HDW. CO.,

Picture Nails, Bright Wire Goods, \&c.
JOSEPH MALLINSON \& CO.,
Scissors and Shears.
A. W. BRINKERHOFF \& SON, Universal Corn Huskers.
P. LOWENTRAUT,

Mechanics' and Plumbers' 'Tools, Skates, $\& \mathrm{c}$.
HARRISBURG HANDLE CO.,
Pick, Axe, Hammer, Sledge and Hatchet Handles.
D. W. BOSLEY \& CO.,

Weather Strips, Floor Scrubbers, Window Cleaners, \&c.
FRED. J. MEYER MFG. CO.,
Corn Poppers, Fly Traps, Muzzles, Rat Traps, \&c.
HOWARD BROS., Cotton, Wool, Horse and Curry Cards.
GAY \& PARSONS,
Ratchet Screw-Drivers, \&c.
TUCKER \& DORSEY MFG. CO.
Alarm Tills, Saw Bucks, Towel Racks, \&c.
PHOENIX CASTER CO., Martin's Patent Casters.
SNELL MFG. CO.,
Cast Steel Augers and Bits, Ship Augers, \&c.
A. F. PIKE MFG CO., Scythe Stone. All kinds Oil Stones, \&c.
W. H. HOWELL \& CO., Geneva Fluters, Laundry Irons, \&c.
EDWARD STORM SPRING CO., Cannon Diamond-Pointed Nail Set and N. Y. Safety Dumb Waiters.

RIPLEY MFG. CO.,
Mallets, Bung Starters, Mouse Traps, \&c.
CHADBORN \& CALDWELL MFG. CO.,
Lawn Mowers, Beef Cutters, \&c.
BURRELL \& WHITMAN, Butter and Cheese Tryers, Flour Testers, \&c.
C. S. BELL \& CO.,

Church and Farm Bells.
CHALFANT MFG. CO.,
Toilet and Gas Irons.
BOSTWICK \& BURGESS, Carpet Sweepers.
NEW SCOTT MFG. CO., A pple, Peach, Orange Parers, Ice Creepers, Fruit Presses, \&c.
DETROIT BLOCK WORKS, Wood and Iron Blocks.
CRONK HANGER CO., Barn Door Hangers, Cronk Plyers, \&c.

## HORKIIS HANDY NOTES AND QUERIES.

Size, Weight, Length and Strength of Iron Wire.

```
BIRMINGHAMI WIRE GAUGE.
```

| $\begin{aligned} & \text { 0. } \\ & \text { 薦 } \\ & \text { 5 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |  |  |  | Direct Strami. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| No. | Inches. | Lbs. | Lbs. | Yards. | Yards. | Sq. in, | Les. |
| 5-0 | 0546 | 16100 | 2830 | 39 | 70 | 0163 | 13070 |
| 4-0 | 0425 | 14000 | 2460 | 45 | 80 | 0142 | 11350 |
| 3-0 | 0394 | 12000 | 2113 | 52 | 93 | 0122 | 9755 |
| 2-0 | 0363 | 10200 | 1794 | 62 | 110 | 0103 | 8280 |
| 0 | 0331 | $84 \quad 72$ | 1490 | 74 | 132 | 0086 | 6850 |
| 1 | 0300 | 6875 | 1210 | 91 | 162 | 0071 | 5650 |
| 2 | 0280 | 5990 | 1054 | 105 | 187 | 0062 | 4920 |
| 3 | 0260 | 5165 | 909 | 121 | 215 | 0053 | 4250 |
| 4 | 0240 | 4400 | 775 | 143 | 255 | 0045 | 3620 |
| 5 | 0220 | 3700 | 651 | 170 | 303 | 0038 | $30: 0$ |
| 6 | 0200 | 3056 | 538 | 203 | 361 | 0031 | 2510 |
| 7 | 0185 | 2615 | 461 | 239 | 428 | 0 0265 | 2220 |
| 8 | 0170 | 2210 | 389 | 286 | 509 | 0023 | 1840 |
| 9 | 0155 | 1836 | 323 | 342 | 609 | 0 0195 | 1560 |
| 10 | 0140 | 1497 | 264 | 420 | 747 | 0016 | 1280 |
| 11 | 0125 | 1195 | 211 | 529 | 939 | 00125 | 1000 |
| 12 | 0110 | 924 | 163 | 700 | 1244 | 0010 | 800 |
| 13 | 0095 | 705 | 124 | 893 | 1589 | 00071 | 568 |
| 14 | 0085 | 551 | 97 | 1142 | 2031 | 00057 | 456 |
| 15 | 0075 | 429 | 76 | 1468 | 2608 | 00044 | 352 |
| 16 | 0065 | 322 | 57 | 1954 | 3473 | 00033 | 264 |
| 17 | 0057 | 248 | 44 | 2540 | 4515 | 00026 | 208 |
| 18 | 0050 | 191 | 34 | 3150 | 5600 | 00020 | 160 |
| 19 | 0045 | 155 | 27 | 4085 | 7246 | 00016 | 128 |
| 20 | 0040 | 122 | 21 | 4912 | 9168 | 00013 | 104 |
| 21. | 0035 | 094 | 17 | 6416 | 11980 | 00010 | 80 |
| 22 | 0030 | 069 | 12 | 8736 | 16300 | 00007 | LC |

## Sizes Expressed in Fractions of an Inch.



## Telegraph and Telephone Wire.

## FROM TRENTON IRON COMPANY LIST.

Weight per Mileoorm. - This term is to be understood as distinguishing the resistance of material only, and means the weight of such material required per mile to give the resistance of one ohm. To ascertain the mileage resistance of any wire, divide the "weight per mile-ohm" by the weight of the wire per mile. Thus in a grade of Extra Best Best, of which the weight per mile-ohm is 5,000 , the mileage resistance of No. 6 (weight per mile 525 Hs .) would be about $91 / 2$ ohms; and No. 14 steel wire, 6,500 tbs., weight per mile-ohm ( 95 tos. weight per mile), would show about 69 ohms.
The grades of LINE WIRE are generally known to manufacturers, consumers, and the trade in this country, as "Extra Best Best" (E. B. B.), "Best Best" (B. B.), "Best" (B.), and "Steel."

The "Extra Best Best" is made of the very best iron, as nearly pure as any commercial iron, soft, tough, uniform, and of very high conductivity, its weight per mile-ohm being about $5,000 \mathrm{Ibs}$.

The "Best Best" is of excellent iron, showing in mechanical tests almost as good results as the E. B. B., but not quite as soft, and being somewhat lower in conductivity; weight per mile-ohm about $5,700 \mathrm{Ibs}$.

Some manufacturers have ceased to make the grade known as "Best"-which term has become to some extent a misnomer, as it has been much applied to inferior wire hardly suited for telegraphic purposes, and having a weight per mile-ohm of 6,000 to $7,000 \mathrm{Jbs}$. It is found that wire made from Bessemer or Open-Hearth Steel, low in carbon, gives better satisfaction, being tougher and stronger than iron wire that can be furnished at an equal price per pound, and offering no more resistance to the electric current. This "Steel" wire is well suited for Telephone or short Telegraph Lines, and the weight per mile-ohm is about 6,500 Ibs.

The following are (approximately) the weights per mile of various sizes of Galvanized Telegraph Wire, drawn by Trenton Iron Co.'s gauge:

| No. | 4, | 5, | 6, | 7, | 8, | 9, | 10, | 11, | 12, | 13, | 14, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Lbs. | 720, | 610, | 525, | 450, | 375, | 310, | 250, | 200, | 160, | 125, | 95. |

Telegraph Wire is frequently made by Birmingham wire gauge, but wire of any desirea weight per mile can be made to order.

## Sizes of Wire Used in Telegraph and Telephone Lines.

No. 4. Has not been much used until recently ; is now used on important lines where the multiplex systems are applied.
No. 5. Little used in the United States.
No. 6. Used for important circuits between cities.
No, 8. Medium size for circuits of 400 miles or less.
No. 9. For similar locations to No. 8, but on somewhat shorter circuits; until lately was the size most largely used in this country.
No. 10. For shorter circuits, railway telegraphs, private lines, police and fire alarm No. 11. $\}$ lines, \&c.
No. 12. For telephone lines, police and fire alarm lines, \&c.
No. 13. $\}$ For telephone lines and short private lines; steel wire is used most generally in No. 14. $\}$ these sizes.

The Coating of Telegraph Wire with zinc as a protection against oxidation is now generally admitted to be the most efticacious method. Some years ago telegraph wire used to be boiled in linseed oil, which process cost less than galvanizing and protected the wire tolerably well, except where it was exposed to the action of sea air. It can still be coated in that manner if required ; but a good coat of zine is the best protection against rust, and wire so coated is moreover a better conductor than plain wire.


Joints In Telegrape Wires.-Above is an illustration of the ordinary "telegraph joint." The fewer the joints in a line the better; hence the advantage of the present method of making single pieces of wire weighing 90 or 100 tbs . (or even 150 lbs .) instèad of (as a few years ago) 30 to 50 lbs . All joints should be carefully mado and well soldered over, for a bad joint may cause as much resistance to the electric current as several miles of wire.


July 8, 1886.
STEEI WIIRE NAIIS.
Standard Price List.

| Size. | Length of <br> Nail. | Add to the <br> price of <br> 10d Com. <br> Standard. |
| :---: | :---: | :---: | :---: | :---: |$|$| Size. |
| :---: | | Length of |
| :---: |
| Nail. | | Add to the |
| :---: |
| price of |
| 10d Com. |
| Standard. |



## Barbed Common.

| 60a.... 3 in. to 6 in | 40 |
| :---: | :---: |
| 8d \& 9d..... $2 \frac{1}{2} \mathrm{in} . \& 2 \frac{3}{4} \mathrm{in}$. | 75 |
| 6d \& 7d..... $22 \mathrm{in}$. \& $2 \frac{1}{4} \mathrm{in}$. | 100 |
| 4d \& 5d..... $1 \frac{1}{2} \mathrm{in} . \& 1 \frac{3}{4} \mathrm{in}$. | 150 |
|  | 250 |
| 2d........... $1^{4}$ in | 400 |

## Casing and Smooth Box.

10d-40d.... 3 in. to 5 in... 75 8d \& 9d..... 2弪in. \& $2 \frac{3}{4} \mathrm{in}$. 125 6d \& 7d..... 2 in. \& $2 \frac{1}{4}$ in. 4d \& 5d..... $1^{\frac{1}{2}} \mathrm{in} . \& 1_{4}^{3}$ in. 3d.......... 1 inch 2d............ 1 inch......... 400 Barbed Box, 25c. add to Smooth.

## Smooth Finishing Nails.

| 2d. | 1 inch...... | 500 |
| :---: | :---: | :---: |
| $8{ }^{\text {d }}$ | $1 \frac{1}{4}$ inch. | [400 |
| 4 d \& 5d. | $1 \frac{1}{2}$ in. \& $1 \frac{3}{4} \mathrm{in}$. | 275 |
| 6d \& 7d. | 2 in. \& $2 \frac{1}{4} \mathrm{in}$. | 200 |
| 8d \& 9d. | $2 \frac{1}{2} \mathrm{in}$ \& $2 \frac{3}{4} \mathrm{in}$. | 150 |
| 10d-20d. | 3 in . to 4 in. .. | 125 |

## Fine Nails.



## Barrel Nails.



Barbed Roofing Nails.

|  | ${ }^{\frac{3}{4}} \mathrm{inch}$. | 450 |
| :---: | :---: | :---: |
|  | $\frac{7}{8}$ inch. | 350 |
| 2 d | 1 inch. | 300 |
| 3d. | $1 \frac{1}{4}$ inch. | 225 |
| 4d. | $1 \frac{1}{2}$ inch. | 175 |
| 5d. | $1 \frac{3}{4}$ inch. | 150 |
| 6 d . | 12 inch. | 125 |

## Barbed Oval-Head Car Nails,

## Light and Heavy.



## Clinch Nails.

|  | nch. | 350 |
| :---: | :---: | :---: |
| 3d. | $1 \frac{1}{4}$ inch. | 275 |
| 4 d \& 5d | $12_{2}^{1} \mathrm{in} . \& 1 \frac{3}{4} \mathrm{in}$. | 200 |
| 6d-20d. | 2 in . to 4 in ... | 175 |

## Wire Spikes.

All
sizes. | 3 in. to 9 in.. $\mid$
35

## W. H. CHAPMAN \& CO.,

 MANUFACTURERS OF
## Fine Saddlery Hardware <br> 

CHIME SLEIGH BELLS, CALL BELLS. Iron Toys and Novelties.
Specialies in Hardware and Light Mietallic Goods Gennerally. MIDDLE'OWN, CONN.


## THE MOST POPULAR LINE

## Spance Hivers

IN THE WORLD.
Write for Catalogue and Prices.
MANUFACTURED BY
CHHCLEEOSPRIIGB BUIT CO,

Lake and Union Sts., 'hicago.

| 1 | 21 | 31 | 41 | 51 |  | 3 | 23 | 33 | 43 | 53 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | DOORS. |  |  |  |  |  |
| \$1.20 | \$3.00 | \$3.00 | \$8.50 | \$8.50 | $7 / 8$ to 1 in. | \$0.60 | \$1.50 | \$1.50 | \$4.25 | \$4.25 |
| 1.50 2.50 | 3.75 | 3.75 | 9.50 | 9.50 | $11 / 8$ to $11 / 4 \mathrm{in}$. | 0.75 | 1.88 | 1.88 | 4.75 | \$4.25 |
| 2.50 4.00 | 5.50 7.50 | 5.50 7.50 | 12.00 | 12.00 | $13 / 8$ to $11 / 2 \mathrm{in}$. | 1.25 | 2.75 | 2:75 | 6.00 | 6.00 |
| 7.00 | 10.00 | 10.00 | 30.00 | 20.00 | 13/4 to 2 in . | 2.00 | 3.75 | 3.75 | 10.00 | 10.00 |
| 10.00 | 1400 | 14.00 | 39.00 | 39.00 | 23/4 to $31 / 2 \mathrm{in}$ in. | 3.50 5.00 | 5.00 6.50 | 5.00 $\mathbf{6 . 5 0}$ | 15.00 19.50 | 15.00 19.50 |

## HOPKINS＇HANDY NOTES AND QUERIES．

|  | ssofld | －1on |
| :---: | :---: | :---: |
|  | wi | （10） |
|  | －00\％ | －줘ํコロ0 |
|  | गๆवपبपร |  |
|  | $\left\lvert\, \begin{gathered} \text { auyoog } \\ \text { pququg } \end{gathered}\right.$ |  |
|  | －¢пupl｜ | व17 |
|  |  |  |
|  | 岳莬！ | 9200000005100 |
|  | $\underbrace{}_{\substack{\text { spuag } \\ \text { Putuondid }}}$ |  |
|  | ${ }_{\text {cograge }}$ |  |
|  |  | が： |
|  | Sauseo｜ | で）－¢ |
|  | reg |  |
|  | Pauld |  |
|  |  |  |
|  |  |  |
|  |  | 90， 0 antont |
|  | тश्पй |  |
|  | ${ }_{\text {\％}}^{\substack{\text { uoumo } \\ \text { poorvg }}}$ |  |
|  | поп |  |
|  |  |  |
|  | 2ts |  |

AWARDED A BRONZE MEDAL BY THE
SYDNEY EXPOSITION, AUSTRALIA.
AWARDED A DIPLOMA BY THE AMERICAN INSTITUTE, NEW YORK.
IT SAVES MONEY, ime, labor and Nails.



APPROXIMATE NUMBER OF WIRE NAILS PER POUND．

| $\infty$ | $120 \text { ヘึ }-\infty 0 \text { 귿: : : : : }$ |
| :---: | :---: |
| － | － |
| $\bigcirc$ |  |
| 12 |  |
| － |  |
| ＋ |  |
| $\cdots$ |  |
| $\bigcirc$ |  |
| \％ |  |
| － |  <br>  |
| － |  |
| c |  |
| $\stackrel{\text { N／}}{\sim}$ |  |
| $\stackrel{\sim}{\sim}$ |  |
| － |  |
| $\stackrel{-\infty}{\sim}$ |  |
| $\cdots$ |  |
| $\cdots$ |  |
| m |  |
| ceo | ！ |
| －kN |  |
| eno |  |
| － |  |
| $\cdots$ |  |
| $\begin{aligned} & \text { •GZIS } \\ & \text { GLVK } \\ & \text {-IXOYddV } \end{aligned}$ |  |
| －IV $7^{\circ}$ 咍 －MVIC |  |
|  अभIM |  |

heads or points．

## HOPIINS' HANDY NOTES AND QUERIES.

## Wires of Various Metals Compared.

The following table is given hy Mr. David Kirkaldy, of London, to exhibit the tensile strength and resistance to tension of wire made of various materials.


Of the eight pieces of steel tested three stood from 40 to 45 twista, and five stood from $11 / 2$ to 4 twists.

## Relative Malleability of the Metals.

1. Gold.
2. Copper.
3. Flatinum.
4. Zinc.
5. Silver.
6. Tin.
7. Lead.
8. Iron.

Specific Resistances of Metals.


## List of Conductors and Non-Conductors,

In which each substance named conducts better than that which precedes it; the first being the best insulator; the last the best conductor

1. Dry Air.
2. Paraffine.
3. Hard Rubber.
4. Shellac.
5. India Rubber.
6. Gutta Percha.
7. Sulphur.
8. Glass.
9. Silk.
10. Dry Paper.
11. Porcelain.
12. Dry Wood.
13. Dry Ice.
14. Water.
15. Saline Solutions.
16. Acids.
17. Charcoal or Coke.
18. Mercury.
19. Lead.
20. Tin.
21. Iron.
22. Platinum.
23. Zinc.
24. Gold.
25. Copper.
26. Silver.

When a wire of small resistance and an insulator of great resistance are employed upon a line the highest excellence is secured, since the lower the resistance in the former the better is the transmission, and the higher the resistance in the latter the less the waste of the current.

Table of Iron, Steel, Copper and Brass Wire. weight of 100 feet in podnds. birminginam wire gaugr.
Brass and Copper Wire from 0 to 25 is numbered by Stubs' Gauge. Fine Wire from No. 26 is numbered by London Gauge.

| No. of Gauge. | PER LINEAL FOOT. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Iron. | Steel. | Copper. | Brass. |
| 0000 | 5462 | 5513 | 6239 | 5893 |
| 000 | 4786 | 4832 | 5467 | 5164 |
| 00 | 3827 | 3863 | 4371 | 4128 |
| 0 | 3063 | 3092 | 3499 | 3305 |
| 1 | 2385 | 2407 | 2724 | 2573 |
| 2 | 2137 | 2157 | 2441 | 2306 |
| 3 | 1778 | 1794 | 203 | 1918 |
| 4 | 1501 | 1515 | 1715 | 1619 |
| 5 | 1282 | 1295 | 1465 | 1384 |
| 6 | 1092 | 1102 | 1247 | 1178 |
| 7 | 8586 | 8667 | 9807 | 9263 |
| 8 | 7214 | 7283 | 8241 | 7783 |
| 9 | 5805 | 5859 | 663 | 6262 |
| 10 | 4758 | 4803 | 5435 | 5 133 |
| 11 | 3816 | 3852 | 4359 | 4117 |
| 12 | 3148 | 3178 | 3596 | 3397 |
| 13 | 2392 | 2414 | 2723 | 258 |
| 14 | 1826 | 1843 | 2085 | 1969 |
| 15 | 1374 | 1387 | 1569 | 1489 |
| 16 | 1119 | 113 | 1279 | 1208 |
| 17 | 8915 | 9 | 1018 | 9618 |
| 18 | 6363 | 6423 | 7168 | 6864 |
| 19 | 4675. | 472 | 534 | 5043 |
| 20 | 3246 | 3277 | 3709 | 3502 |
| 21 | 2714 | 274 | 31 | 2929 |
| 22 | 2079 | 2098 | 2373 | 2241 |
| 23 | 1656 | 1672 | 1892 | 1788 |
| 24 | 1283 | 1295 | 1465 | 1384 |
| 25 | 106 | 107 | 1211 | 1144 |
| 26 | 0859 | 0867 | 0981 | 0926 |
| 27 | 0678 | 0685 | 077\% | ${ }_{0} 732$ |
| 28 | 0519 | 0524 | 0593 | 056 |
| 29 | 0448 | 0452 | 0511 | 0483 |
| 30 | 0382 | 0385 | 0436 | 0412 |
| 31 | 0265 | 0267 | ${ }^{1303}$ | 0286 |
| 32 | 0215 | 0217 | 0245 | 0231 |
| ${ }_{3}^{33}$ | 017 | 0171 | 0194 | 0183 |
| 34 | 013 | 0131 | 0148 | 014 |
| 35 | 0066 | 0067 | 0076 | 0071 |
| 36 | 0042 | 0042 | 0048 | 0046 |


9th－All the Bearings in the Mower are long， so that the wear will be very slow．
 oil will cut the bearings．
10th－Our Pawls will Not Gum or Stick；we therefore recommend to oil with machine oil．Coal
11th－The machine is sharpened by a very simple method，so that even a child can sharpen it with the greatest ease．A Crank and full directions ac－ company each machine．
1st－The ease and quickness with which it can be ad－ justed to cut High and Low grass；in a moment you can vary the cut from one－half to three and one－half inches．
2 d －It is the only Mower in the market where the same machine can，in a Moment，be Adjusted to Cut grass from one to twelve inches high．
3d－Being a Front－Cut Machine the operator is enabled to cutgrass close up to walls，fences，trees，etc．
4th－The Reel Knives are protected by a Guard to prevent them from cutting shrubbery，etc．
5th－－The ratchet or pawl has no Spring，makes scarcely any noise，has eight catches in a circumfer－ ence of three inches，so that the reel starts to cutting the moment the machine is started forward．
6th－The material used is of the very best quality，
so that Breakages Seldom if Ever occur．
7 th－The Knives are made by a patented process，
that Breakages Seldom if Ever occur．
7 th－The Knives are made by a patented process， of the best steel，and are hardened and tempered in oil．
8th－－They are made with the double GEAR，giving it ease of motion，combined with strength，EnAbling one to Cut grass rapIDLy going at a slow rate of speed．四和情 85 Chambers and 67 Reade Sts．


The SARGENT-SPRAGUE CAN OPENER is unequalled for opening tin cans of ANY SHAPE OR SIZE. The DOUBLE FOOT gives it a bearing on both sides of the knife, thus bringing the cutting edge in position to make a CLEAN SHEAR CUT, without leaving the tin torn or ragged; the double bearing also prevents an unequal strain upon the rivet, and insures durability with RAPID and SATISFACTORY work. Well made. Requires no adjusting. Always ready for use. It is the best and most popular.


The Eclipse Spring and Check are used in the counting room of this paper, and have been found to possess all the advantages claimed for them by the manufacturers. They not only close the door tightly, but do it so quietly that persons of the most nervous temperament are not annoyed. This little invention is especially useful in homes, and when placed on the doors leading from the kitchen it keeps them closed, thus preventing the odor which arises from cooking from permeating the house.

## BUY THE ECLIPSE.

## THE ECLIPSE DOOR SPRIIM <br> Is the best ever offered, because :

 The greatest power, exerted ws the door opens. closed, gradually dec is adjustable.Tension of spring is adjust is of extra heavy Spring is out of sight, a oil tempered. steel of the best quality, oilteable, so that in

## THE ECLIPSE DOOR CHECK

 The parts are interchart can be replaced.Prevents doors from slamming.
Can be placed on any door
Allows the door to open wide. The parts are interchangeable, so that in case of breakage any part can be replaced.

For Sale by all well regulated Hardware Dealers the World over. Manufactured by SARGENT \& C口.

## TABLE OF WEIGHTS,

Showing Estimated Numker of Pounds of Barbed Wire Required to Fence Space or Distances Mentioned, with, One, Two or Three Strands.

|  |  |  | 1 Strand. |  |  |  | 2 Strands. |  | 3 Strande. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 Square Acre..... .... |  |  |  |  | lbs. |  | 115 | lbs. | 172 |  |
| 1 Side of a Square Acre. |  |  | $\begin{aligned} & 151 / 4 \\ & 40 \% \end{aligned}$ |  | " |  | 283/8 | \% | 423/4 | 108. |
| 1 Square Half-Aore.... |  |  |  |  | " |  | 81 | " | 1211/2 | 6 |
|  |  |  | 1440 |  | " |  | 2880 | " | 4320 | " |
| 1 Side of 1 Square Mile. |  |  | 360 |  | 6 |  | 720 | " | 1080 | * |
| 1 Rod in Length......100 Rods in Length.... |  |  | $\begin{gathered} 11 / 8 \\ 1123 / 2 \end{gathered}$ |  | * |  | 21/4 |  | 33/8 | * |
|  |  |  | " |  | 22514 | " | $\begin{gathered} 3371 / 2 \\ 21 \end{gathered}$ | 4 |
| 10C Feet in Length...... |  |  |  |  | 7 |  |  |  | " |
| When Posts are placed apart. | There are required for each strand of wire, for one mille of fence... |  |  |  |  | Total oost of 1 mile of fence when posts cost $121 / 2 \mathrm{c}$. each, and wire and staples cost $73 / 4 \mathrm{c}$. 1 b . for galvanized. |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Feet | Posts. | $\left\lvert\, \begin{gathered} \text { LBS. OF } \\ \text { STAPLES } \end{gathered}\right.$ |  | LbS. or |  | 3 Strands. |  |  | 4 Strands. |  |
| 8 | 660 | 71/4 |  | $\frac{360}{}$ |  | \$16790 |  |  | \$196 35 |  |
| 10 | 528 | 53/4 |  | 360 |  | 14900 |  |  | 18039 |  |
| 12 | 440 | $\begin{aligned} & 43 / 4 \\ & 34 / 2 \end{aligned}$ |  | 360 |  | 13978 |  |  | 16807 |  |
| 161/8 | 320 |  |  | 360360 |  | 12445 |  |  | 15268 |  |
| 20 | 264 | 3 |  |  |  | 11740 |  |  | 14553 |  |
| 25 | 212 | 21/4 |  | 360 |  | 11074 |  |  | 13880 |  |
| 30 | 176 | 22/4 |  | 360 |  | 10616 |  |  | 13422 |  |
| 33 | 160 |  |  | 36 |  | 10409 |  |  | 13215 |  |

## Number of Wires and Distances Between Posts.

Although fences are sometimes made of two wires, to fence against cattle only, experts recommend no less than three, and as many more as desirable. Five wires make a good fence-such is used by nearly all the railroad companies.

The following are the distances apart at which the wires are generally placed:

Two-wire fence, 1 st wire 22 inches, 2 d wire 44 inches from the ground.
Three-wire fence, 1st wire 16 inches, 2 d wire 30 inches, 3 d wire 48 inches from the ground.

Four-wire fence, 1st wire 12 inches, 2 d wire 24 inches, 3 d wire 36 inches, 4th wire 48 inches from the ground.

Five-wire fence, 1 st wire 8 inches, 2 d wire 15 inches, 3 d wire 24 inches, 4th wire 36 inches, 5 th wire 48 inches from the ground.

One less strand may be used with four-point than two-point wire.
The height of the legal fence varies as follows:
F'our feet high in Maine, New Hampshire, Massachusetts, Delsware and Idaho.

Four and a half feet high in Vermont, Rhode Island, Connecticut, New York, New Jersey, Maryland, West Virginia, Ohio, Michigan, Indiana, Illinois, Wisconsin, Minnesota, Iowa, Tennessee, Kansas, Nebraska, Colorado, Oregon, Arizona, Nevada, Montana, Dakota and Utah.

Five feet in Pennsylvania, Virginia, Missouri, Kentucky, North Carolina, South Carolina, Georgia, Alabama, Florida, Mississippi, Texas, Arkarsas, California, and Washington and Wyoming Territories.

# TRENTON IRON COMPANY, 

(INCORPORATED 1847)

MAANTFACITEEEUS OF
 OF ALL KINDS. WIRE ROPE,
Rolled Rods of Refined Iron and Steel,


WORKS AND OFFICE:
AT TRENTON, NEW JERSEY.
NEW YORK OFFICE:
COOPER, HEWITT \& CO.,
17 BUTRIING SIIP.
Philadelphia Office: 22 North Fourth Street.

## HOPKINS' HANDY NOTES AND QUERIES.

## Wire Standard Hoisting Ropes,

 With 6 Strands of 19 Wires Each.TRADE NUMBERS, SIZES, WEIGHT AND STRENGTH.

| IRON. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \dot{\sim} \\ & \text { Z } \\ & 0 \\ & 0 \\ & \text { ºw } \\ & \text { En } \end{aligned}$ |  |  |  |  |  |  |  |
| 1 | $2 \frac{1}{4}$ | 7 | 7.75 | 74 | 15 | 151 $\frac{1}{2}$ | 8 |
| 2 | 2 | $6 \frac{1}{4}$ | 6.11 | 65 | 13 | $14 \frac{1}{2}$ | 7 |
| 3 | $1 \frac{3}{4}$ | $5 \frac{1}{2}$ | 5.09 | 54 | 11 | 13 | $6 \frac{1}{2}$ |
| 4 | $1 \frac{5}{8}$ | 5 | 4.00 | 44 | 9 | 12 | 5 |
| 5 | $1 \frac{1}{2}$ | $4 \frac{3}{4}$ | 3.55 | 39 | 8 | 111 $\frac{1}{2}$ | $4 \frac{3}{4}$ |
| $5 \frac{1}{2}$ | $1 \frac{3}{8}$ | $4 \frac{1}{4}$ | 2.90 | 33 | $6 \frac{1}{2}$ | $10 \frac{1}{4}$ | $4 \frac{1}{2}$ |
| 6 | $1 \frac{1}{4}$ | 4 | 2.42 | 27 | $5 \frac{1}{2}$ | $9 \frac{1}{2}$ | 4 |
| 7 | $1 \frac{1}{8}$ | $3 \frac{1}{2}$ | 1.95 | 20 | 4 | 8 | $3 \frac{1}{2}$ |
| 8 | 1 | 31 | 1.53 | 16 | 3 | 7 | 3 |
| 9 | 7 | $2 \frac{3}{4}$ | 1.16 | 11.50 | $2 \frac{1}{2}$ | 6 | $2 \frac{3}{4}$ |
| 10 | $\frac{3}{4}$ | $2 \frac{3}{8}$ | 0.85 | 8.64 | $1 \frac{3}{4}$ | 5 | $2 \frac{1}{2}$ |
| $10 \frac{1}{4}$ | $\frac{5}{8}$ | 2 | 0.60 | 5.13 | $1 \frac{1}{4}$ | $4 \frac{1}{2}$ | 2 |
| $10 \frac{1}{2}$ | $1{ }^{9}$ | $1 \frac{3}{4}$ | 0.47 | 4.27 | $\frac{3}{4}$ | $4$ | $1 \frac{3}{4}$ |
| $10 \frac{3}{4}$ | $\frac{1}{2}$ | $1 \frac{1}{2}$ | 0.37 | 3.48 | $\frac{1}{2}$ | $3 \frac{1}{2}$ | $1 \frac{1}{2}$ |
| $10_{8}^{2}$ | $\frac{3}{8}$ | 11 | 0.26 | 2.50 | $\frac{1}{4}$ | 3 | 1 |

CRUCIBLE STEEL.

| 1 | $2 \frac{1}{4}$ | 7 | 7.75 | 164.69 | 32.90 |  | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 2 | $6 \frac{1}{4}$ | 6.11 | 132.37 | 26.50 |  | 8 |
| 3 | $1 \frac{3}{4}$ | $5 \frac{1}{2}$ | 5.09 | 108.13 | 21.63 |  | $7 \frac{1}{2}$ |
| 4 | $1 \frac{1}{8}$ | 5 | 4.00 | 97.17 | 19.44 |  | 6 |
| 5 | $1 \frac{1}{2}$ | $4 \frac{3}{4}$ | 3.55 | 86.38 | 17.30 | $16 \frac{1}{2}$ | $5 \frac{1}{2}$ |
| 5 | $\frac{1}{2}$ | $1 \frac{3}{8}$ | $4 \frac{1}{4}$ | 2.90 | 72.33 | 14.46 | 14 |
| 6 | $1 \frac{1}{4}$ | 4 | 2.42 | 50.17 | 10.00 | $12 \frac{1}{4}$ | 5 |
| 7 | $1 \frac{1}{8}$ | $3 \frac{1}{2}$ | 1.95 | 38.00 | 7.70 | 11 | $4 \frac{1}{2}$ |
| 8 | 1 | $3 \frac{1}{8}$ | 1.53 | 29.20 | 5.80 | 9 | 4 |
| 9 | $\frac{7}{8}$ | $2 \frac{3}{4}$ | 1.16 | 21.55 | 4.00 | 8 | $3 \frac{3}{4}$ |
| 10 | $\frac{3}{4}$ | $2 \frac{3}{8}$ | 0.85 | 14.99 | 3.00 | $6 \frac{1}{2}$ | $3 \frac{1}{2}$ |
| 10 | $\frac{3}{8}$ | 2 | 0.60 | 12.53 | 2.50 | $5 \frac{3}{4}$ | 3 |
| $10 \frac{1}{2}$ | $\frac{4}{1}$ | $1 \frac{3}{4}$ | 0.47 | 8.81 | 1.75 | $5 \frac{1}{4}$ | $2 \frac{3}{4}$ |
| $10 \frac{3}{4}$ | $\frac{1}{2}$ | $1 \frac{1}{2}$ | 0.37 | 7.52 | 1.50 | $4 \frac{3}{4}$ | 2 |

The weights above stated are for Ropes with Hemp Centers. For Ropes made with Wire Centers, add TEN PER CENT. to these weights. Also. see Table of Galvantzed Strand.


## TABLE

SHOWING THE DIAMETER IN DECIMALS OF AN INCH, AND THE NUMBER OF FEET IN ONE POUND, OF EACE GAUGE IRON WIRE, AS DIAWN BY WASHBURN \& MOEN WIRE GAUGE.

| No. | Decimals of inch. | Feet in pound. | No. | Decimals of inch. | Feet in pound. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 000 | . 362 | 2.873 | 15 | . 072 | 72.984 |
| 00 | . 331 | 3.444 | 16 | . 063 | 95.396 |
| 0 | . 323 | 3.619 | 17 | . 054 | 129.873 |
| 1 | . 283 | 4.698 | 18 | . 047 | 172.401 |
| 2 | . 263 | 5.444 | 19 | . 041 | 222.222 |
| 3 | . 244 | 6.333 | 20 | . 035 | 301.249 |
| 4 | . 225 | 7.460 | 21 | . 032 | 370.036 |
| 5 | . 207 | 8.809 | 22 | . 028 | 476.190 |
| 6 | . 192 | 10.270 | 23 | . 025 | 649.74 |
| 7 | . 177 | 12.047 | 24 | . 023 | 879.03 |
| 8 | . 162 | 14.365 | 25 | . 020 | 1189.71 |
| 9 | . 148 | 17.238 | 26 | . 018 | 1485.62 |
| 10 | . 135 | 20.698 | 27 | . 017 | 1872.71 |
| 11 | . 120 | 26.174 | 28 | . 016 | 2361.42 |
| 12 | . 105 | 34.254 | 29 | . 015 | 2978.91 |
| 13 | . 092 | 44.655 | 30 | . 014 | 3754.83 |
| 14 | . 080 | 59.174 |  |  |  |

## TABLE

SHOWING CORRESPONDING SIZES OF STUBS' STEEL WIRE OR RODS, TO THE DIVISIONS OF AN INCH.

| Nos. 2 | 12 | 21 | 28 | 30 | 35 | 42 | 48 | 52 | 56 | 61 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{14}{64}$ | $\frac{12}{65}$ | $\frac{10}{64}$ | $\frac{9}{64}$ | $\frac{8}{84}$ | $\frac{7}{64}$ | $\frac{6}{64}$ | $\frac{5}{64}$ | $\frac{4}{65}$ | $\frac{3}{84}$ | $\frac{0^{2}}{64}$ |

MESH OF COAL SCREENS
USED, BY TEE PRINCIPAL COAL DEALERS.


## MESH OF FANNING-MILL WIRE CLOTH.

The ordinary widths are $20,21,22$ ànd 24 inch, and the Meshes for cleaning Seed are:
For Wheat
$.4 \times 4$ or $5 \times 5$
" Corn and Oats.

" Cockle.................................................................... $8 \times 8$ or $9 \times 9$
" Реas.................................................................... $2 \times 4$ or $2 \times 5$
" Clover.................................................................13x13 or 14814
" Clover from Sand................................................ 20 or 22 Mesh
"، Timothy ....................................................6x16, 18x18 or $20 \times 20$
" Cheat .....................................2x9, 10 or 12 , or $3 \times 10,11$ or 12
" Flax.........................................................4x13, 4x14 or $4 x 16$

## BROWNING，SISUM \＆CO．，

 No． 85 CHAMBERS STREET，NEW YORK． manufacture Hardware Specialties， COTTER＇S SPRING KIEYS
MANUFACTURERS＇SUPPLIES．
D Rings，Belt Hooks，Staples，etc． COTTER＇S SPRING EREYS
MANUFACTURERS＇SUPPLIES．
D Rings，Belt Hooks，Staples，etc． COTTER＇S SPRING KEYS
MANUFACTURERS＇SUPPLIES．
D Rings，Belt Hooks，Staples，etc． COTTER＇S SPRING KEYS
MANUFACTURERS＇SUPPLIES．
D Rings，Belt Hooks，Staples，etc． In fact everything appertaining to ひエミコ ヨモコンロエペG．


## HOPKINS' HANDY NOTES AND QUERIES.

Spring Cotters and Keys and their Applications.
SPRING COTTERS.

| No ............. | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 39 | 39 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wire Gauge.. | 13 | 13 | 11 | 11 | 7 | 7 | 4 | 4 | 1 | 1 |
| For Hole...... | ${ }^{3} 2$ | ${ }^{3}$ | $\frac{1}{8}$ | $\frac{1}{8}$ | ${ }^{3}$ | ${ }^{3}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | ${ }^{\text {S }}$ | $\frac{5}{16}$ |
| For Nuts...... | $\frac{1}{2}$ | $\frac{3}{4}$ | $\frac{3}{4}$ | $\frac{7}{8}$ | $\frac{7}{4}$ | 1 | 1 | $1 \frac{1}{4}$ | $1 \frac{1}{4}$ | $1 \frac{1}{2}$ |

SPRING KEYS.

| No ......................... | 000 | 00 | 0 | 1 | 1 12 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wire Gauge | 12 | 12 | 12 | 11 | 11 | 10 | 10 | 10 |
| For Hole | ${ }_{3}^{72}$ | ${ }_{3}^{72}$ | ${ }_{3}^{72}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{39}{32}$ | \% ${ }^{2}$ | ${ }_{3} 9$ |
| For Boits................. | $\frac{5}{8}$ | $\frac{3}{4}$ | $\frac{7}{8}$ | $\frac{5}{4}$ | $\frac{7}{8}$ | 8 | , | 1 |

## Wire Bale Ties.

Nos. 16, 15, 14, 13 and 12 are put up in bundles of 250 Ties, Nos. 11, 10 and 9 wire are put up in bundles of 125 Ties and run in length from 6 feet to $11 \frac{1}{4}$ feet.

Other Sizes and Lengths made to order as required.
To get length of Tie required, add three inches to the measure around the bale when under pressure.

SIZE AND LENGTH OF TIES IN GENERAL USE.
For $17 \times 22$ Perpetual Presses, use Ties $8.8 \frac{1}{2}$ or 9 feet long; No. 14 wire for heavy work, and No. 15 for light work.

For $14 \times 18$ Perpetual Presses, use Ties $8,8 \frac{1}{4}$ or $8 \frac{1}{2}$ feet long; No. 14 wire for extra or extreme heavy work; No. 15 for heavy and medium work, and No. 16 for light work.

For $12 \times 15$ Perpetual Presses. use Ties $7 \frac{1}{2}, 7 \frac{3}{4}$ or 8 feet long; No. 15 wire for heavy work, and No. 16 for medium or light work.

For Upright Hand Presses, use No. 14 or No. 15 wire.
For Upright Light Horse Presses, use No. 14 wire.
For Upright Heavy Portable or Light Stationary Horse Presses, use No. 13 wire.

For Upright Heavy Stationary and Benter Presses, use No. 12, No. 11 and No. 10 wire, according to the size of bale and number of Ties used.

For Broom Corn, Wool, Cotton, Hides. \&c., or other materials put up in heavy bales, use No. 9, No. 10 or No. 11 wire.

## BERUOTR de OOOIK，

 MIF卫上AエE． TIIN PLATE． Roofing Plate， Special Sizes， Block \＆Bar Tin， Tinners＇Solder．SHEETMRON． Russia，
Pat．Planished， Galvanized， Double Seaming， Cold Rolled， Common．

WIRE．
Bright Iron， Annealed Fence， Coppered， Galvanized， Tinned．

SOLDER． Ex．Wiping， No． 1 Refined， No． 1 Capping， Ex．No． 1 ＂B．\＆C．＂ Half and Half． COPPER． Sheet，Bottoms， Solders，Bolts， Wire，Ingot． SHEEET ZINC． American， Spelter． ELROWS．
Russia，Planished Charcoal．

## Stove Boards．

 Stove Bolts，＂Pipe Collars，
＂＂Dampers，
Fire Pots，
Rivets，Black，
＂Tinned，
Kettle Ears．
SUNDRIES． Babbit Metal， Antimony，
Spelter Solder，
Tinsmiths＇Tools and Machines， Milk Can Trim－

## HOPKINS' HANDY NOTES AND QUERIES.

## Table of Standard or Regular Tin Plates.

Size and Kind of Plates-Number and Weight of Sheets in a Box, and Wire Gauge Thickness, of every Kind and Size.

| Size. | Grade. |  | $\begin{array}{\|l\|l} \dot{A} \\ 0 \\ \hline \end{array}$ |  | Size. | Grade. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 by 14 | IC | 225 |  |  | 13 by 13 | IC | 225 |  | 29 |
|  | IX | 225 | 98 |  | 13 d | IX | 25 | 130 | ${ }_{27}^{29}$ |
|  | IXX | 225 | 118 | 26 |  | IXX | 225 | 190 | 26 |
|  | $\mathrm{IXXX}^{\text {IX }}$ | 225 | 124 |  |  | ${ }_{\text {IX }}$ | 225 | 216 | 25 |
|  | $\mathrm{IXXXX}^{\text {I }}$ | 225 | 140 | $243 / 2$ | 14 hy 14 |  | 225 | 152 | 29 |
| 10 by 14 | IC | ${ }_{225}^{225}$ | ${ }_{136}^{108}$ |  |  | ${ }_{\text {IX }}$ | 225 | 192 | 27 |
|  | 1 xx | 225 | 159 | ${ }_{26}^{27}$ | " | 1 IXXX | ${ }_{225}^{225}$ | 250 |  |
| " | IXXX | 225 | 178 |  |  | 1XXX | 225 | ${ }_{279}$ | 241/2 |
| 6 | IXXX | 225 | 200 |  | 15 by 15 | IX | 225 | 221 |  |
| 10 by 20 | IC. | 225 | ${ }^{156}$ | 29 |  | IXX | 225 | 255 |  |
|  | IX | 225 | 196 | 27 | "، | IXX | 225 | 288 |  |
| 11 by 11 | ${ }_{\text {IX }}^{\text {IX }}$ | 225 | 95 | ${ }^{29}$ |  | ${ }_{\text {IX }}$ | 225 | 322 | 241/2 |
| " | $\mathrm{IX}_{\text {IXX }}$ | ${ }_{225}^{225}$ | 118 135 |  | 16 by 16 | ${ }_{\text {IX }}$ | 225 | 252 | ${ }_{27}^{29}$ |
| 11 by 15 | SDC | 200 | 164 | 26 | "6 | IXX | 225 | 290 | 26 |
|  | SDX | 200 | 185 |  |  | IXXX | 225 | 328 |  |
| " | SDXX | 200 | 206 | 241/2 | "6 | IXXX | 225 | 368 | 241/2 |
|  | SDXXX | 200 | 226 | ${ }^{23}$ | 17 by 17 | ${ }^{\text {IX }}$ | 112 | 140 |  |
| ${ }^{6}$ | SDXXXX | 200 | 248 |  |  | IXX | 112 | 162 | 26 |
| 22 by 15 | $\mathrm{SDC}^{\text {SD }}$ | 100 | 164 | ${ }^{26}$ |  | IXXX | 112 | 184 |  |
|  | SDX | 100 | 185 |  |  | ${ }_{\text {IX }}$ | 112 | 205 |  |
| " | SDXX | 100 | 206 |  |  |  | 112 | 158 | $2{ }^{2}$ |
| " | SDXXX | 100 | 226 |  | 18 by 18 | ${ }_{\text {IXX }}^{\text {IXXX }}$ | 112 | 182 |  |
| 123/2 by 17 | SDXXXX | 100 | 248 | 23 | " ${ }^{\text {\% }}$ |  | 112 | 206 |  |
|  | DC | 100 | 96 | 28 |  | ${ }_{\text {IXX }}^{\text {IXX }}$ | 112 | 231 |  |
|  | DX |  | 124 |  | 22 by 22 |  | 56 | 135 |  |
| " | DXX | 100 | 145 | 24 |  | IXX | 56 |  |  |
| " | Dxxx | 100 | 166 |  | " | ${ }_{\text {IXXXX }}$ | 56 |  |  |
|  | DXXXX | 100 | 185 | 22 | $\begin{gathered} 24 \text { by } \\ 6 \\ 6 \\ 6 \end{gathered}$ | $\begin{aligned} & \mathrm{IXX} \hat{X}^{\mathrm{AN}} \\ & 1 X X X X \\ & \mathrm{IXXXXX} \end{aligned}$ | 56 | 157 |  |
| 15 by 21 | DX ${ }^{\text {DXX }}$ | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | 183 27 <br> 214 24 |  |  |  | 5 | $\ldots$ |  |
| 6 |  |  |  |  | 56 |  |  |  |
|  | ${ }_{\text {DXXXX }}^{\text {DXXX }}$ | 100 | 276 |  |  | " | Terne Plates. |  |  |  |
|  | ${ }_{\text {DC }}^{\text {DXAX }}$ | 5050 | 96 28 <br> 124 26 |  |  | $\mid \mathrm{IC}$ |  | 108.29 |  |
| $25 \mathrm{by}_{66} 17$ | DX |  |  |  | 14 by 20 |  |  |  |  |
| " | Dxx | 50 | 145 24 <br> 166  <br> 23  |  | 20 by 28 | İ | 112 | ${ }_{216}^{136}$ |  |
| " | DXXX | 50 |  |  | $\mathrm{IX}_{\mathrm{IC}}$ | 112 |  |  |
| 14 by 20 | ${ }_{\text {dx }}^{\text {DXX }}$ |  |  | 108 |  |  |  |  | $20 \text { by } 200$ |
|  | IX | 112108 |  |  | $\left.\right\|_{\mathrm{IX}} ^{\mathrm{IX}}$ |  |  |  |  |
| " | IXX | 11215 |  | 1136 | Tin Taggrars. |  |  |  |  |
| ' | IXXX | 112 | 178 |  | 10 by 14 \| | 4 | 145 |  |  |
| " | IXXXX |  | 200240$2431 / 2$ |  |  | Black Tagerrs. |  |  |  |
| 12 by 12 " | IXXXXXX | ${ }_{225}^{112}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\left\|\begin{array}{l} 2220 \\ 225 \\ 225 \\ 225 \end{array}\right\|$ | 108136157178 | $\left\|\begin{array}{l} 29 \\ 27 \\ 26 \\ 25 \end{array}\right\|$ |  | $\left\lvert\, \begin{aligned} & 256 \\ & 300 \\ & 360 \\ & 450 \end{aligned}\right.$ |  | $\begin{aligned} & 108332 \\ & 10834 \\ & 10836 \\ & 108,36 \\ & 108 \end{aligned}$ |  |
|  | $\operatorname{IIXXX}_{\text {IXX }}$ |  |  |  |  |  |  |  |  |  |  |  |
|  | IXXX |  |  |  |  |  |  |  |  |  |  |  |



## From the "Metal Worker." <br> Cost of Tin Roofing.

The following table shows the cost per square and per square foot of tin roofing, laid with $14 \times 20$ tin, with tin at any price from $\$ 4$ to $\$ 10$ per box. The first column contains the price per box of tin; the second column shows the cost of tin per square ( 100 square feet) of surface, and the third column shows the cost of tin per square foot of surface :

FLAT SEAM ROOFING--COST WITH $14 \times 20$ TIN.

| Price of tin per box. | Cost per square of flat root $14 \times 20 \mathrm{tin}$. | Cost per sq. foot. | Price of tin per box. | Cost per square of flat roof $14 \times 20$ tin. | Cont per sq. foot. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * 4.25. | \$2.21 | . 0221 | \$8.25 | . $\$ 4.29$ | .04.29 |
| 4.50. | 2.34 | . 0234 | 8.50 | 4.42 | . 0442 |
| 4.75 | 2.47 | . 0247 | 8.75 | 4.55 | . 0455 |
| 5. 00. | 2.60. | .0260) | 9.00 | 4.68 | . 0468 |
| 5.25 | 2.73. | . 0273 | 9.25 | 4.81 | . 0481 |
| 5.50 . | 2.86 | . 0286 | 9.50 . | 4.94 | . 0494 |
| 5.75 | 2.99 | . 0299 | 9.75 | 5.07 | . 0507 |
| 6.00 | 3.12 | . 0312 | 10.00 | 5.20 | . 0520 |
| 6.25 | 3.25 | . 0325 | 10.25. | 5.33 | . 0533 |
| 6.50. | 3.38 | . 0338 | 10.50 | 万. 46 | .0546 |
| 6.75 | 3.51. | . 0351 | 10.75. | E. 59. | .0559 |
| 7.00. | 3.64 | . 0364 | 11.00. | 5.72 | . 0572 |
| 7.25 | . 3.77 | . 0377 | 11.25. | 5.85 | . 0585 |
| 7.50 | 3.90 | . 0390 | 11.50 | 5.98. | . 0598 |
| 7.75 | . 4.03 | . 0403 | 11.75 | . 6.11 | . 0611 |
| 8.00 . | 4.16 | . 0416 | 12.00. | 6.24 | . 0624 |

STANDING SEAM ROOFING-COST WITH $14 \times 20$ TIN.

| Price of tin per box. | Cost per square of standing seam roof with $14 \times 20$ tin. | Cost per sq. foot. | Price of tin per box. | Cost per square of standing seam roof with $14 \times 20 \mathrm{tin}$. | Cost per sq. foot. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \$4.25. | \$2.37 | . 0237 | \$7.25. | \$4.03. | 0403 |
| 4.50 | 2.51. | . 0251 | 7.50. | . 4.17 | . 0417 |
| 4.75. | 2.65.. | . 0265 | 7.75 | . 4.31 | . 0431 |
| 500. | 2.79 | . 0279 | 8.00 | . 4.45 | . 0445 |
| ¢. 25. | 2.93 | . 0293 | 8.25.. | . 4.59 | . 0459 |
| 5.50 | . 3.06 | . 0306 | 8.50 | .. 4.73 | . 0473 |
| 5.75 . | . 3.20 | . 0320 | 8.75 | . 4.87 | . 0487 |
| 6.00 | 3.34 | . 0334 | $\bigcirc .00$ | 5.01 | . 0501 |
| 6.25 | . 3.48 | . 0348 | 9.2.). | . 5.15. | . 0515 |
| 6.50 . | . 3.62 | . 0362 | 9.50 | . 5.29 | .0529 |
| 6.75. | . 3.76.. | . 0376 | 9.75 | . 5.43. | . 0543 |
| 7.00.. | . 8.90. | . 0390 | 10.00 | . 5.57.. | . 0557 |

## Cost of Tin Roofing-Continued.

The following table shows the cost per square and per square foot of tin roofing, laid with $20 x \geqslant 8$ tin, with tin at any price from $\$ 8$ to $\$ 24$ per box. The first column contains the price per box of tin; the second column shows the cost of tin per square ( 100 square feet) of surface, and the third column shows the cost of tin per square foot of surface.
flat seam rookng-cost with $20 \times 28 \mathrm{TIN}$.

| Price of tin per box. | Cost per square of flat seam roof $20 \times 28$ tin. | Cost per sq. foot. | Price of tin per box. | Cost per square of flat seam roof $20 \times 28$ tin. | Cost per sq. foot. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \$8.00. | \$2.01 | . 0201 | \$16.00 | \$4.01 | . 0401 |
| 8.50 | 2.13 | . 0213 | 16.50 | . 4.13 | . 0413 |
| 9.00 | 2.26 | . 0226 | 17.00 | . 4.26 | . 0426 |
| 9.50. | 2.38. | . 0238 | 17.50 | 4.38 | . 0438 |
| 10.00 | . 2.51 | . 0251 | 18.00 | . 4.51 | . 0451 |
| 10.50. | . 2.63 | . 0263 | 18.50 | . 4.63 | . 0463 |
| 11.00 | . 2.76 | . 0276 | $13 \cdot 00$ | . 4.76 | . 0476 |
| 11.50. | . 2.88 | . 0288 | 19.50 | . 4.88 | . 0488 |
| 12.00 | . 3.00 | .030') | 20.00 | . 5.01. | . 0501 |
| 12.50. | . 3.13 | . 0313 | 20.50 | ... 5.13. | . 0513 |
| 13.00 | . 3.25 | . 0325 | 21.00 . | . . 5.26. | . 0526 |
| 13.50. | . 3.38 | . 0338 | 21.50 | 5.38 | . 0538 |
| 14.00 . | .. 3.50. | . 0350 | 22.00 | 5.51 | . 0551 |
| 14.50 . | .. 3.63 | . 0363 | 22.50 | . 5.63. | . 0563 |
| 15.00. | . 3.7. | .037\% | 23.00. | . 5.76 | . 0576 |
| 15.50.. | 3.88. | 0388 |  |  |  |

STANDLIG SEATH BOOFING-COST MITH 20x28 TIN.

| Price of tin per box. | Cost per standing seam roof with 20.28 tin. | Cost per sq. foot. | Price of tin per box. | Cost per square of standing geam roof with 20228 tin. | Cost per 8q. foot. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \$8.00... | . $\mathbf{2}^{2.15 .}$ | . 0215 | \$16.50. | \$4,49 | . 0442 |
| 8.50 | 2.28. | . 0228 | 17.00 | 4.56.. | . 0456 |
| 900. | 2.41. | . 0241 | 17.50 | . 4.69 | . 0469 |
| 9.50 | 2.55 | . 0255 | 18.00 | 4.82 | . 0482 |
| 10.00 | 2.68 | . 0268 | 18.50 | 4.96 | . 0496 |
| 10.50 | 2.82 | . 0282 | 19.00 | .. 5.09. | . 0509 |
| 11.00 | . 2.95 | . 0295 | 19.50 | . 5.23 | . 0523 |
| 11.50 | . 3.09 | . 0309 | 20.00 | . 5.36 | . 0536 |
| 12.00 | .. 3.21 | . 0321 | 20.50 | . 5.49 | . 0549 |
| 12.50 | 3.35. | . 0335 | 21.00 | . 5.63.. | . 0563 |
| 1300 | 3.48 | . 0348 | 21.50 | . 5.76.. | . 0576 |
| 13.50 | . 3.62 | . 0362 | 22.00 | 5.90 | . 0590 |
| 14.00 | 375. | . 0375 | 22.50 | . 6.03 | . 0603 |
| 14.50 . | . 3.89. | . 0389 | 23.00 | . 6.17 | . 0617 |
| 15.00 | . 4.02.. | . 0402 | 23.50 | . 6.30 | . 0630 |
| 15.50. | 4.15 | . 0415 | 24.00. | 6.43.. | . 0643 |
| 16.00 | 4.29 | . 0429 |  |  |  |

## TAPSCOTT \＆HIBBERD，

## Tinners’ Tools and Machines，



Squaring and Circle Shears， PRESSES，DIES

Special Tools for Working Sheet Metal．
Full Line of Supplies．


## IM <br> I <br> 

## NORTH CAROLINA．

Best Quality Extra Selected．
WYOMING．
Best Second Grade Ever Offered． AMBER．

Cheapest in the Market．Splits well．
Guaranteed to Stand the Heat Equal to North Carolina．
SEND FOR PRICE－LIST AND SAMPLES．

## EUGENE MUNSELL \＆CO．，

MINES：
FRANKLIN，MACON CO．， NORTH CAROLINA．

## MICA HEADQUARTERS，

No． 218 Water st．，New York．
RECIPES FOR SOLDERS.
SOFT SOLDERS.
Among the soft solders to be employed with metals meltingat a low temperature, we give the following:
Solder for bright tin ware, etc. : "Half \& Half."
Tin ..... 50 parts.
Lead ..... 50
Solder for roofing, and plumbing joints: "No. 1."
Tin ..... 40 parts.
Lead ..... 60
Solder for galvanized ware, etc.: "No. 1. Extra."
Tin45 parts.
Lead ..... 55
Solder for pewter :
Tin ..... 100 parts.
Lead ..... 200
Solder for sealing iron in stone :
Lead. ..... 200 parts.
Zinc. ..... 100
This alloy is more resisting and adheres better than purelead.
Solders for obtaining casts of medals, coins, etc. :
Bismuth ..... 400 or 600
Lead ..... 200 " 200
Tin. ..... 200 " 300This alloy melts between 212 F . (or at water-boiling point)and becomes very liquid.
HARD SOLDERS.
Above we give the alloys of all soft solders. Herewith wegive the constituents and process of making the harder ones:
Solder for iron :
Copper ..... 67
Zinc. ..... 33
Solder for pure copper or ordinary brass:Copper3
Zinc ..... 1
Solder for hard brass :
Soraps of metal to be soldered ..... 4
Zinc. ..... 1
Hard solder for small and thin pieces:
Copper ..... 86.5
Zinc ..... 4.5
Solder for uniting brass tube seams:
Copper... 70 Brass ..... 77.5
Zinc ..... 22.5
The proper process of making these solders is as follows: The copper and zinc are melted in separate crucibles, then added together in a pouringpot and thoroughly mixed, and when at the proper temperature is poured from a certain height upon a bundle of birch twigs, kept wet and agitated at the surface of a tub of water. The solder is thus obtained in the shape of fine grains, having an irregular crystallization. When solder is not sumfciently fine it is hammered in a cast-iron mortar and passed through a sieve.

## STOVE ロOAFDS.

## THEJTHREE BEST THAT CAN BE MADE.

 WOOD-LINED AND PAPER-LINED.
## © TME DASM*

Is Made of Embossed White Metal, Perfect in Make and Finish, Beautiful and Durable.

IS AN EMBOSSED METAL BOARD.
FIRE-PROOF AND BRASS-FINISHED.

## **THE FAVORITE**

Is the Best ZINC BOARD Made. Oil Finished and a Durable Silver Polish. Prices Reasonable. Send for Price-Lists and Discounts. Sold by Jobbers in all Large Towns.

## MADE ONLY BY



## 211 Water Street, New York.

P.S.-He makes a Metal "Slop-Jar Mat" that should be under every slop-jar in use.

Table of Weights of Sheet Copper per Square Foot, and Thickness per English Wire Gauge.

| English Wire Gauge. | Weight per sq. foot. | Weight of Each Sheet. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $14 \times 18$ | $24 \times 48$ | $30 \times 60$ | $36 \times 72$ | $48 \times 72$ |
| No. $\begin{array}{r}1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9\end{array}$ | lbs. oz. | lbs. | lbs. | lbs. | lbs. | lbs. |
|  | 148 |  | 116 | 181 | 261 | 348 |
|  | 1314 |  | 111 | 174 | 250 | 334 |
|  | $12 \quad 12$ |  | 102 | 159 | 230 | 306 |
|  | 119 |  | 93 | 145 | 209 | 278 |
|  | 101 |  | 81 | 126 | 182 | 242 |
|  | 96 |  | 75 | 118 | 169 | 226 |
|  | 811 |  | 70 | 109 | 157 | 209 |
|  | $7 \quad 14$ |  | 63 | 99 | 142 | 190 |
|  | 73 |  | 58 | 90 | 130 | 173 |
| 10 | 68 |  | 48 | 81 | 117 | 156 |
| 11 | 512 |  | 46 | 73 | 104 | 139 |
| 12 | 51 |  | 41 | 64 | 91 | 122 |
| 13 | 45 | .... | 35 | 54 | 78 | 104 |
| 14 | 39 |  | 29 | 45 | 65 | 86 |
| -15 | 34 |  | 26 | 41 | 59 | 78 |
| 16 | 214 |  | 23 | 36 | 52 | 70 |
| 17 | 28 |  | 20 | 22 | 45 | 60 |
| 18 | $2 \quad 2$ |  | 18 | 27 | 39 | 52 |
| 19 | $1 \begin{array}{ll}1 & 15\end{array}$ |  | 16 | 24 | 35 | 47 |
| 20 | 112 |  | 14 | 22 | 32 | 43 |
| 21 | 19 |  | 13 | 20 | 29 | 39 |
| 22 | 22 | $6 \frac{1}{2}$ | 12 | 18 | 26 | 35 |
| 23 | 20 | $5 \frac{7}{8}$ | 10 | 16 | 23 | 31 |
| 24 | 18 | $5 \frac{1}{4}$ | 9 | 15 | 21 | 28 |
| 25 | 16 | $4 \frac{4}{8}$ | 8 | 121 ${ }^{\frac{1}{2}}$ | 19 | 25 |
| 26 | 14 | 4 | 7 | 11 | 15 | 21 |
| 27 | 12 | $3 \frac{1}{2}$ | 6 | $9{ }^{\frac{3}{8}}$ | 13 | 18 |
| 28 | 10 | 3 | 5 | 7 | 11 | 15 |

WEIGHT OF SHEET COPPER PER SQUARE FOCT.

| $\begin{aligned} & \frac{1}{1} \frac{1}{2} \text { in } \\ & \frac{1}{8} \\ & \frac{1}{4} \\ & \frac{1}{2} \end{aligned}$ | Thick | eighs |  |  |  | lbs to | he squar | foot. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6 | " |  |  |  | " | " | ، |
|  | " | ، |  |  |  | " | " 6 | " |
| Planished Copper-Boiler Size. |  |  |  | Gutter Copper-20x72 Inches. |  |  |  |  |
| Wire Gauge. | Size of Sheet. | Weighto | f 8heets | Thickness Wire Gauge. | Thickness of $30 \times 60$ sheet. |  | Sheet of same thickness $20 x 72$. |  |
|  |  | Pounds. Ounces. |  |  |  |  |  |  |
| 6 | 14x49 | 3 | 14 |  |  |  |  |  |
| 8 | $14 \times 52$ $14 \times 57$ | 4 | 2 | No. |  | Size. | Lbs. |  |
|  | $14 \times 60$ | 5 | 9 | 27 | 10 | $30 \times 60$ | 9 | 2 |
| 14 | $14 \times 48$ | 4 |  | 24 | 12 | $30 \times 60$ | 10 | 8 |
| 16 | $14 \times 48$ | 4 | 4 | 23 | 14 | $30 \times 60$ | 13 | 2 |

[^3]HAND-HAMMERED
COPPER KETTLES

 MANUFACTURERR,
BUCYRUS, OHIO.
Send for Catalogue and Prices.

SIZES:

##  $30,32,35,40,45,50,55$ and 60 gallon. Other sizes made to order.

C--



Number of Copper Belt Rivets and Burs in one Pound.

| Inch.... | $\cdot \frac{1}{4}$ | ${ }_{16}^{5}$ | $\frac{3}{8}$ | ${ }_{1}{ }^{7}$ | $\frac{1}{2}$ | ${ }_{16}^{9}$ | 5 | $\frac{3}{4}$ | $\frac{7}{8}$ | 1 | $1 \frac{1}{8}$ | $1 \frac{1}{4}$ | $1 \frac{1}{2}$ | Burs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. 7... | 272 | 250 | 228 | 180 | 164 | 160 | 148 | 112 | 116 | 100 | 84 | 80 | 69 | 345 |
| " 8... | 276 | 248 | 208 | 200 | 178 | 172 | 152 | 136 | 110 | 104 | 96 |  |  | 390 |
| " $9 . .$. | 340 | 280 | 272 | 248 | 228 | 220 | 184 | 176 | 156 | 136 |  |  |  | 610 |
| - ${ }^{\text {. } 10 . .}$ | 544 | 448 | 384 | 340 | 304 | 300 | 272 | 238 | 204 |  |  |  |  | 716 |
| " $12 .$. | 588 | 512 | 452 | 404 | 354 | 334 | 304 | 272 |  |  |  |  |  | 985 |
| " 13... | 996 |  | 532 |  |  |  |  |  |  |  |  |  |  | 1630 |

Copper Hose Rivets and Burs.

| Size | ${ }^{5}$ | $\frac{8}{8}$ | ${ }_{1}{ }^{7} 6$ | 2 | ${ }_{.16}^{9}$ | 8 | $\frac{3}{4}$ | $\frac{7}{8}$ | Burs. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { No. } 7 \ldots . . . \\ 64 \\ 8 . . . . \end{gathered}$ | 308 | 201 | $\begin{aligned} & 155 \\ & 181 \end{aligned}$ | $\begin{aligned} & 142 \\ & 160 \end{aligned}$ | $\begin{aligned} & 133 \\ & 150 \end{aligned}$ | $\begin{aligned} & 122 \\ & 135 \end{aligned}$ | $\begin{aligned} & 109 \\ & 116 \end{aligned}$ | $\begin{array}{r} 97 \\ 100 \end{array}$ | $\begin{aligned} & 345 \\ & 390 \end{aligned}$ |

Copper Oval Head (or Trunk) Rivets and Burs.


Number of Copper Braziers' Rivets in one Pound.

| Nos. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 18 | 100 | 70 | 44 | 34 | 24 | 18 | 12 | 9 | 6 | 4 |

## PALMIER MEGG CO

 Stove Boards,Tea Kettles, Cuspadores, Trays,

Crumb Trays, Coal Hods, Umbrella

Stands,
Etc.
NEW YORK:
290 PEARLSTREET $\}$
WRITE FOR
CATALOGUE. \{ 86 CHICAGO: 86 LAKE STREET.


Bar and Sheet Brass．
weigit in pounds．

|  |  | $\begin{aligned} & \text { Square Bars } \\ & 1 \text { Foot Long. } \end{aligned}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1－16 | 2.7 | ． 015 | ． 011 | 11－16 | 45.95 | 4.07 | 3.20 |
| 1／8 | 6.41 | ． 055 | ． 045 | 为 | 49.69 | 4.55 | 3.57 |
| 3－16 | 8.12 | ． 125 | ． 1 | 3－16 | 51.4 | 5.08 | 3.97 |
| $1 / 4$ | 10.76 | ． 225 | ． 175 | 1／4 | 54.18 | 5.65 | 4.41 |
| 5－16 | 13.47 | ． 350 | ． 275 | 5－16 | 56.85 | 6.22 | 4.86 |
| 3／6 | 16.25 | ． 51 | ． 395 | 3／8 | 59.55 | 6.31 | 5.35 |
| 7－16 | 19. | ． 69 | ． 54 | 7－16 | 62.25 | 7.45 | 5.85 |
| 16 | 21.65 | ． 905 | ． 71 | 1／2 | 65. | 8.13 | 6.87 |
| 9－16 | 24.3 | 1.15 | ． 9 | 9－16 | 57.75 | 8.83 | 6.92 |
| 5／8 | 27.12 | 1.4 | 1.1 | $5 / 6$ | 70.35 | 9.55 | 7.48 |
| 11－16 | 29.77 | 1.72 | 1.35 | 11－16 | 73. | 10.27 | 8.05 |
| ＊ | 32.46 | 2.05 | 1.60 | 3／4 | 75.86 | 11. | 8.65 |
| 13－16 | 35.18 | 2.4 | 1.85 | 13－16 | 78.52 | 11.82 | 9.29 |
| 7／8 | 37.85 | 2.75 | 2.15 | 7／8 | 71.25 | 72.68 | 9.95 |
| 16－16 | 40.55 | 3.15 | 2.48 | 15－16 | 84. | 13.5 | 10.55 |
| 1 | 43.29 | 3.65 | 2.85 | 2 | 86.75 | 14.35 | 11.25 |

Bar and Sheet Copper．
Weight in Pounds．

| 台出葸感我苟 등̈̈․․要品俞 |  |  |  | คัน ถั毠呂気完受苗 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1－16 | 2.88 | ． 015 | ． 011 | 1 1－16 | 49. | 4.35 | 3.41 |
| 1／8． | 5.75 | ． 06 | ． 056 |  | 52. | 4.86 | 385 |
| 3－16 | 8.65 | ． 134 | ． 105 | 3－16 | 54.9 | 5.40 | 4.29 |
| 3／4 | 11.48 | ． 235 | ． 187 | 1／4 | 57.65 | 6. | 4.73 |
| 5－16 | 14.36 | ． 375 | ． 295 | 5－16 | 60.5 | 0.60 | 5.20 |
| 3／8 | 17.28 | ． 54 | ． 424 | 3／8 | 53.45 | 7.27 | 5.70 |
| 7－16 | 20.19 | ． 735 | ． 575 | 7－16 | 66.35 | 7.90 | 6.28 |
| 1／2 | 23.1 | ． 960 | ． 75 | 1／2 | 69.3 | 8.64 | 6.80 |
| 9－16 | 26. | 1.21 | ． 95 | 9－16 | 72.15 | 9.28 | 7.30 |
| 5／6 | 28.85 | 1.51 | 117 | 5／8 | 75.1 | 10.15 | 8. |
| 11－16 | 31.68 | 1.81 | 1.42 | 11－16 | 7795 | 10.95 | 8.6 |
| $3 / 4$ | 34.57 | 2.15 | 1.7 | $3 / 4$ | 80.75 | 11.70 | 9.24 |
| 13－6 | 36.46 | 2.54 | 2. | 13－16 | 83.60 | 12.60 | 9.85 |
| 7／8 | 40.39 | 2.95 | 2.3 | ／8 | 86.58 | 13.46 | 10.55 |
| 15－16 | 43.27 | 3.37 | 2.64 | 15－16 | 09.45 | 14.35 | 11．25 |
| 1 | 46.15 | 3.84 | 3.01 | 2 | 92.25 | 15.35 | 12. |



The object of this Diamond Point can be readily seen, in that it prevents the Set from slipping from the head of the nail while in use, thus saving in many cases some valuable piece of work.
It is fast taking the place of every other Nail Set. Once seen, Mechanics will have no other.
These Sets are carefully made from the Best Quality of Tool Steel. The Points are turned and thoroughly tempered, and will not break off.

EACH SET FULLY WARRANTED.
The Trade Supplied. Put up in boxes of 1 dozen, $1-4$ gross and 1 gross. Assorted sizes. Prices and terms upon application.


## The EDWARD STORM SPRING CO., Limited,



## COXIEAD'S Combined Saw Vise and Set.



## PATENTED

July 25, 1882, and

March 8, 1887.


## Made in 3 Sizes for Circular Saws.

Holding Saws from 5 to 10,7 to 18 , and 8 to 26 inches in diameter. Also in TWO SIZES FOR HAND, BAND AND SCROLL SAWS.
THESE VISES ARE ALEO MADE WITHOUT THE SETS.
A SAMPLE TESTIMONIAL:
Thomas Little \& Son, Carpenters and Builders, 718 South Eleventh St., $\}$
Mr. John F. Coxhead : Dear Sir-Your No. 4 Combined Saw Set and Vise, which we received last month, is superior in every respect to anything we have yet had, and we can cheerfully recommend it. Respectfully yours, THOMAS LITTLE \& SON.

Send for Catalogue and Trade Discount.

## Mannfactured by JOHN F. COXHEAD, Poughkeepsie, N. Y.

## HOPKINS' HANDY NOTES AND QUERIES.

## Weight of Iron, Steel, Copper and Brass Plates.

diaketer and thickness determined by american gatae.


## Seamless Brass and Copper Tubing.

| List of Regular |  | Sizes. | Weight per ft. |  | List of Regular Sizes. |  |  | Weight per ft. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Outside Diam. | di B ® H | Stubs' Wire Gauge. |  | $$ | Ontside Diam. |  | Stubs' Wire Gauge. |  | $\begin{aligned} & \dot{\oplus} \\ & \dot{\oplus} \\ & \stackrel{1}{\mu} \\ & 0 \end{aligned}$ |
| $\frac{3}{8}$ | 12 ft . | 19 | . 18 . | . 19 | 21 ${ }^{\frac{1}{8}}$ | 12 ft . | 12 | 2.53 | 2.66 |
| $\frac{1}{2}$ |  | 18 | . 27 * | . 29 | $2 \frac{1}{4}$ | " | 12 | 2.68 | 2.82 |
| $\frac{5}{8}$ | " | 18 | . 33 | . 35 | $2 \frac{3}{8}$ | " | 12 | 2.84 | 2.99 |
| 3 | 6 | 17 | . 46 | . 49 | $2 \frac{1}{2}$ | " | 10 | 3.74 | 3.94 |
| 13 | " | 17 | . 49 | . 53 | $2{ }^{\text {\% }}$ | " | 10 | 3.99 | 4.15 |
| ${ }_{8}^{7}$ | " | 17 | . 53 | . 58 | ${ }^{23}$ | ${ }^{6}$ | 10 | 4.14 | 4.36 |
| $\frac{1}{\frac{1}{15}}$ | " | 16 | . 63 | . 67 | 3 | " | 10 | 4.54 | 4.78 |
| 1 | " | 16 | . 67 | . 71 | 31 | 6 | 10 | 4.94 | 5.20 |
| $1 \frac{1}{8}$ | " | 16 | . 76 | . 80 | $3 \frac{1}{2}$ | " | 10 | 5.35 | 5.63 |
| $1 \frac{1}{4}$ | " | 15 | . 97 | 1.02 | 4 | " | 10 | 6.14 | 646 |
| $1{ }^{\frac{3}{8}}$ | " | 14 | 1.22 | 1.29 | $4 \frac{1}{4}$ | " | 10 | 6.33 | 6.66 |
| $1{ }^{\frac{1}{2}}$ | " | 14 | 1.36 | 1.44 | $4 \frac{1}{4}$ | \% 6 | 10 | 6.52 | 6.86 |
| 1 㘼 | '6 | 13 | 1.65 | 1.74 | $1{ }^{1}$ | " | 10 | 673 | 7.07 |
| $1 \frac{3}{4}$ | " | 13 | 1.79 | 1.88 | $4 \frac{1}{2}$ | " | 10 | 6.92 | 7.28 |
| $1 \frac{1}{16}$ | " | 13 | 1.83 | 1.92 | $4{ }^{3}$ | " | 10 | 730 | 7.68 |
| 1 ${ }^{\frac{7}{8}}$ | $\because$ | 12 | 2.19 | 2.31 | 5 | " | 10 | 7.67 | 8.08 |
| $1 \frac{1}{6}$ | " | 12 | 2.28 | 2.40 | $5 \frac{1}{2}$ | " | 10 | 8.49 | 894 |
| 2 | " | 12 | 2.35 | 2.47 | $6^{-}$ | " | 10 | 9.31 | 9.79 |

Weight of Brass, Copper and Zinc Tubing, per Foot.

NUMBERED BY BROWN \& SHARPE'S GAUGE.
Weight in Thousandths of Pounds.

| BRASS. No. 17. |  | BRASS. No. 20. |  | COPPER. <br> Lightning-Rod Tube. Nio. 23. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Inch. | Pounds. | Inch. | Pounds. | Inch. | Pounds. |
|  | .107 .157 .185 .234 .266 .318 | $\frac{1}{3}$ <br> $\frac{8}{3}$ <br> 16 <br> $\frac{1}{4}$ <br> $\frac{1}{16}$ <br> $\frac{3}{16}$ | .032 .039 .063 .106 .126 158 | $\frac{1}{2}$ <br> $\frac{1}{8}$ <br> $\frac{16}{8}$ <br> $\frac{8}{8}$ <br> $\frac{1}{1}$ <br> $\frac{3}{6}$ <br> $\frac{3}{4}$ | .162 .176 .186 .211 .229 |
|  | .333 .377 .462 | - | .189 <br> . .208 <br> .220 |  |  |
|  | . 542 | 年 | . 252 | $\frac{1}{3}$ | . 161 |
|  | . 675 | $\frac{7}{8}$ | . 284 | $\frac{5}{8}$ | . 185 |
|  | . 740 | 1 | . 378 | - | . 234 |
|  | . 915 | $1{ }^{1}$ | . 500 | $\frac{7}{8}$ | . 272 |
|  | . 980 | $1 \frac{1}{2}$ | . 580 | $1{ }^{8}$ | . 311 |
|  | 1.506 |  |  | $1 \frac{1}{4}$ | . 380 |
|  | 1.90 |  |  | $1 \frac{1}{2}$ | . 452 |
|  | 2.188 |  |  |  |  |

## SEAMLESS COPPER TUBING．

Weight por Foot，in Pounds．

| O．D． | STUBS＇ |  | WIRE |  | GAUGE． |  | O．D． | STUBS＇WIRE |  |  |  | GAUGE． |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inches． | 11 | 2 | 3 | 4 | 15 | 16 | Inches． | 11 | 12 | 13 | 14 | 15 | 16 |
| $\frac{1}{2}$ | ． 57 | ． 50 | ． 46 | 41 | 37 | ． 33 | 3 | 4.35 | 3.81 | 3.30 | 2.90 | 2.51 | 2.23 |
| $\frac{8}{8}$ | ． 76 | ． 66 | ． 60 | 52 | ． 47 | ． 42 | 818 | 4.54 | 3.97 | 3.44 | 3.02 | 2.61 | 232 |
| 3 | ． 94 | ． 82 | ． 74 | ． 64 | ． 58 | ． 52 | 3 | 4.73 | 4.13 | 3.58 | 3.14 | 2.72 | 2.42 |
| $\frac{7}{8}$ | 1.13 | 1.00 | ． 88 | ． 76 | ． 69 | ． 62 | $3{ }^{\frac{2}{8}}$ | 4.92 | 4.29 | 3.72 | 3.26 | 2.82 | 2.51 |
| $1{ }^{8}$ | 1.32 | 1.16 | 1.02 | ． 89 | ． 80 | ． 71 | $3 \frac{1}{2}$ | 5.12 | 4.47 | 3.87 | 3.38 | 2.93 | 2.61 |
| 11 $\frac{1}{8}$ | 1.51 | 1.32 | 1.17 | 1.01 | ． 91 | ． 80 | 35 | 5.31 | 4.64 | 4.01 | 3.50 | 3.04 | 2.70 |
| $1 \frac{1}{4}$ | 1.71 | 1.49 | 1.311 | 1.14 | 1.02 | ． 90 | 33 | 5.50 | 482 | 4.15 | 3.62 | 3.14 | 2.80 |
| $1 \frac{3}{8}$ | 1.90 | 1.65 | 1.461 | 1.29 | 1.12 | 1.00 | 37 | 5.69 | 4.99 | 4.29 | 3．74 | 3.24 | 2.89 |
| $1{ }^{\frac{1}{2}}$ | 2.08 | 1.82 | 1.60 | 1.44 | 1.23 | 1.09 | 4 | 5.88 | 5.15 | 4.44 | 3.86 |  |  |
| $1 \frac{5}{8}$ | 2.26 | 1.98 | 1.74 | 1.58 | 1.34 | 1.18 | $4 \frac{1}{8}$ | 6.065 | 5.31 | 4.58 | 3.98 |  |  |
| 13 | 2.46 | 2.15 | 1.88 | 1.70 | 1.45 | 1.28 | 4 | 6.24 | 5.48 | 4.72 | 4.10 |  |  |
| ${ }^{17}$ | 2.65 | 2.31 | 2.02 | 1.82 | 1.55 | 1.37 | $4 \frac{3}{8}$ | 6.43 | 5.64 | 4.86 | 4.22 |  |  |
| 2 | 2.84 | 2.47 | 2.16 | 1.94 | 1.66 | 1.47 | $4 \frac{1}{2}$ | 6.62 | 5.80 | 5.00 | 4.34 |  |  |
| $2 \frac{1}{81}$ | 3.02 | 2.66 | 2.30 | 2.06 | 1.76 | 1.56 | $4 \frac{5}{8}$ | 6.80 | 5.96 | 5.15 | 4.46 |  |  |
| $2 \frac{1}{4}$ | 3.21 | 2.82 | 2.45 | 2.18 | 1.86 | 1.66 | $4 \frac{18}{4}$ | 6.99 | 6.13 | 5.29 | 458 |  |  |
| 23 | 3.40 | 2.99 | 2.59 | 2.30 | 1.97 | 1.75 | 5 | 7.35 | 6.16 | 5.57 | 4.82 |  |  |
| $2{ }^{2}$ | 3.59 | 3.15 | 2.73 | 2.42 | 2.07 | 1.85 | $5 \frac{1}{4}$ | 7.74 | 6.79 |  |  |  |  |
| $2{ }^{\frac{8}{8}}$ | 3.78 | 3.32 | 2.87 | 2.54 | 2.18 | 1.94 | $5 \frac{1}{2}$ | 8.13 | 7.12 |  |  |  |  |
| 23 | 3.97 | 3.48 | 3.01 | 2.66 | 2.29 | 2.04 | $5{ }_{6}^{3}$ | 8.52 | 7.45 |  |  |  |  |
| $2{ }^{\frac{7}{8}}$ | 14.16 | 3.65 | 3.16 | 2.78 | 2.40 | 2.13 | c | 8.90 | 7．78 |  |  |  |  |

To ascertain weight of Seamless Brass Tubing，multiply by ． 95 ．

| Outside Diam． | Same 28 Iron Size． |  |  |  | Outside <br> Diam． | $\left\|\begin{array}{c} \text { Same } \\ \text { as Iron } \\ \text { Size. } \end{array}\right\|$ |  | 号员呂 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{13}$ | $\frac{1}{8}$ | 12 ft ． | ． 31 | ． 33 | $1 \frac{5}{8}$ | 1 ${ }^{\frac{1}{4}}$ | 12 ft ． | 2.42 | 2.54 |
| $\stackrel{9}{16}$ | 2 | 16 | ． 42 | ． 44 | $1 \frac{7}{8}$ | 1 $\frac{1}{2}$ | ، | 2.92 | 3.07 |
| $\frac{1}{1} \frac{1}{6}$ | $\frac{3}{8}$ | 16 | ． 56 | ． 59 | $2 \frac{3}{88}$ | 2 | ＂ | 3.90 | 4.09 |
| $\frac{13}{18}$ | $\frac{1}{2}$ | ${ }^{6}$ | ． 81 | ． 85 | $2 \frac{7}{8}$ | $2 \frac{1}{2}$ | ＂ | 514 | 5.41 |
| $11{ }_{16}$ | $\frac{3}{4}$ | ${ }^{6}$ | 1.19 | 1.25 | 31 | 3 | 6 | 8.08 | 8.50 |
| $1{ }_{16}$ | 1 | 16 | 1.66 | 1.74 |  |  |  |  |  |

## SIZES AND WEIGHT OF COPPER TUBE．

## NO． 18 STUBS＇WIRE GAUGE．＊

| INSIDE DIAMETER． | WEIGET PER FOOT． | INSIDE | WEIGET PER FOOT． | INSIDE DIAMETER． | WEIGHT PER FOOT． |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | ． 32 | 11 $\frac{1}{4}$ | ． 95 | 2 | 1.40 |
| $\frac{5}{8}$ | ． 43 | $1 \frac{3}{8}$ | 1.02 | 21 | 1.50 |
| 4 | ． 55 | $1 \frac{1}{2}$ | 1.10 | $2 \frac{1}{4}$ | 1.60 |
| $\frac{7}{8}$ | ． 65 | $1 \frac{5}{8}$ | 1.15 | 23 | 1.70 |
| 18 | ． 75 | $1 \frac{3}{17}$ | 1.20 | $2 \frac{1}{2}$ | 1.80 |
| $1 \frac{1}{8}$ | ． 85 | $1 \frac{7}{8}$ | 1.30 |  |  |

In ordering，state whether Tubes are to be annealed for bending．

[^4] from the theoretical weight must be expected．

## IVES' PATENT SASH LOCKS.

 WARRANTED BURC̣LAR PROOF.

A very important feature of the Ives Sash Lock is in its securely locking when closed, and simultaneously drawing the meeting rails closely together. All the movements are accomplished by cams without the instrumentality of springs, thus avoiding the possibility of getting out of order.
Ives' Patent Sash Locks -AND-
DOOR BOLTS
Are for Sale by all Dealers in Hardware.
Patented April 17, 1883; Oct. 16, '83; Dec. 30,' 84 ;
March 24,'85; May 12,'85; June 23,'85;
Patented in Canada March 24, 1886.

## HOBART B. IVRS \& CO.

SOLE MANUFACTURERS AND PATENTEES,
Send for Illustrated Price-Lists.
NEW HAVER, CONN.

# WIT. SHFOLLHORI: \& CO 



Full line of Straight and Bent Trimmers, Bankers' and Paper Shears, Barbers' Shears, Ladies' Embroidery, Pocket and Buttonhole Scissors.
WARRANTED SUPERIOR QUALITY. FULL NICKEL-PLATED.

## HOPKINS' HANDY NOTES AND QUERIES.

## STANDARD WEIGHTS OF LEAD PIPE, Etc.

WEIGHT PER FOOT OF LEAD PIPE AND TIN-LINED LEAD PIPE.

| 它范 | AAA Brooklyn. |  | Ex Strong |  | A Strong. |  | $\underset{\text { Medium. }}{\mathrm{B}}$ |  | Light. |  | $\left\lvert\, \begin{gathered} \mathrm{D} \\ \text { Exht. } \end{gathered}\right.$ |  | $\frac{\mathrm{E}}{\text { Fountain. }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lb. | Oz | Lb. | Oz . | Lb. | Oz . | Lb. | Oz | Lb. |  |  | Oz | Lb. |  |
| 3/8 | 1 | 8 | 1 | 5 | 1 | 2 | 1 | 0 | 0 | 13 | 0 | 10 | 0 | 8 |
| $1 /$ | 3 | 0 | 2 | 0 | 1 | 12 | 1 | 4 | 1 | 0 | 0 | 13 | 0 | 11. |
| 5/8 | 3 | 8 | 2 | 12 | 2 | 8 | 2 | 0 | 1 | 12 | 1 | 8 | 1 | 0 |
| 24 | 4 | 8 | 3 | 8 | 3 | 0 | 2 | 4 | 2 | 0 | 1 | 12 | 1 | 4 |
| 1 | 6 | 0 | 4 | 12 | 4 | 0 | 3 | 4 |  | 8 | 2 | 0 | 1 | 8 |
| 114 | 6 | 12 | 5 | 12 | 4 | 12 | 3 | 12 | 3 | 0 | 2 | 8 | 2 | 0 |
| $13 / 2$ | 9 | 0 | 8 | 0 | 6 | 4 | 5 | 0 | 4 | 4 | 3 | 8 | 3 | 4 |
| 2 | 10 | 12 | 9 | 0 | 7 | 0 | 6 | 0 | 5 | 4 |  | 0 |  |  |

## LEAD WASTE PIPE.



EXTRA WEIGHTS OF LEAD PIPE.

| Calibre. | \|7-16 Thick. | 3/8 Thick. |  | 5-16 Thick. |  |  | ick. | 3-16 | Thick. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23/2 inches.. | $\underset{0}{\mathrm{Lb}} . \mathrm{Oz}_{0}$. | ${ }_{16} \mathrm{~L}$. | $\mathrm{Oz}$ | Lb. | $\begin{aligned} & \mathrm{O} \% . \\ & 11 \end{aligned}$ | Lb. | $\mathrm{Oz}$ | Lb. | Oz. 13 |
| $3 \times 16$ | 0 0 | 19 | 10 | 16 | 0 | 12 | 0 | 9 | 0 |
| $31 / 26$ | 2610 | 21 | 10 | 18 | 5 | 15 | 0 | 9 | 8 |
| 4 "6 | $30 \quad 0$ | 25 | 0 | 21 | 0 | 16 | 0 | 12 | 8 |
| $41 / 2 \quad 6$ | 00 | 0 | 0 | 0 | 0 | 18 | 0 | 14 | 0 |
| 8 "1 .. | 0 | 31 | 0 | 0 | 0 | 20 | 0 | 0 | 0 |

## PATENT FINISH DROP SHOT.

AMRERICAN STANDARD SIZES.

|  | Diameter in 100ths of an inch. | No. of Shot to the oz |  |  | Diameter in 100ths of an inch. | No. of Shot to the oz. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Extra Fine | - 11/2 | 84021 | No. 6 |  | 11 | 218 |
| Fine Dust. | 3 | 10784 |  | 5 | 12 | 168 |
| Dust | 4 | 4565 | -6 | 4 | 13 | 132 |
| No. 12. | 5 | 2326 | [ 3 | 3. | 14 | 106 |
| " 11. | 6 | 1346 | " 2 | 2. | 15 | 86 |
| " 10... | . Trap Shot | 1056 | ${ }^{6} 1$ | 1. | 16 | 71 |
| " 10... | .. 7 | 848 |  | B | 17 | 59 |
| 9. | ..Trap Shot | 688 |  | BB | 18 | 50 |
| " 9. | .. 8 | 568 |  | BBB | 19 | 42 |
| " 8. | ..Trap Shot | 472 |  | T | 20 | 30 |
| " 8. | 9 | 399 |  | TT | 21 | 31 |
| 67. | Trap Shot | 338 | 6 | F | 22 | 27 |
| " $\uparrow . .$. | .. 10 | 291 | ، | FF. ........... | . 23 | 24 |

## COMPRESSED BUCK SHOT.



## HOPKINS' HANDY NOTES AND QUERIES.

## RULES FOR COMPUTING WEIGHTS OF METALS.

## r.-CAST IRON.

To find the weight of a cast-iron rod or bar : multiply the weight of a wrought rod or bar from the usual tables, and deduct 2.27 of its weight.
II. - WBOUGHT IRON.

To compute the weight of any piece of wrought iron : find the number of cubic inches it contains and multiply by . 2816 . This will give the weight in pounds.
III.-CAST IRON.

Multiply the number of cubic inches by 2607.
IV. - COPPER.

To compute the weight of copper: ascertain the number of cubic inches, and multiply by . 3242 .
ק.-LEAD.

To compute the weight of lead: multiply the number of cubic inches by .41015 .
vi.-brass.

To compute the weight of brass: multiply the number of cubic inches by . 3112 .

## USEFUL MATHEMATICAL RULES.

To find the area of a parallelogram : multiply the length by the breadth.

To find the circumference of a circle : multiply the diameter by 3.14159 .

To find the diameter of a circle: multiply the circumference by .31831 .

To find the area of a circle: multiply the square of the diameter by .7854 ; or, multiply the square of the circumference by .079577 ; or, multiply half the diameter by half the circumference.

To find the area of a circular ring : multiply the sum of the dumeters of the two circles by the difference of the diameters, and that product by .7854 .

To find the side of a square that shall equal the area of a given diameter or circumference: multiply the diameter of the circle by .886227 ; or, multiply the circumference of the circle by .282094 .

To find the diameter of a circle that shall contain the area of a given square: multiply the side of the given square by 1.12838.

To find the side of the largest square that can be inscribed in a circle of a given diameter or circumference: multiply the given diameter by .707106; or, multiply the given circumference by .225079 .

To find the circumference of a circle required to exactly admit a square of a given side: multiply the given side'by .225079.

## HOPKINS' HANDY NOTES AND QUERIES.

## VALUE OF IRON.

VALUE PER GROSS TON ( 2240 LBS.) OF IRON AT FROM 1-10TH OF A CENT TO 10 CENTS PER POUND, INCREASING AT RATE OF 1-10TH OF A CENT PER POUND.

| Per Lb. | Per T'on. | Per Lb. | Per Ton. | Per Lb. | Per Ton. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \$0.001 | \$2.24 | \$0.035 | \$78.40 | \$0.068 | \$152.32 |
| 0:002 | 4.48 | 0.036 | 80.64 | 0.069 | 154.56 |
| 0.003 | 6.72 | 0.037 | 82.88 | 0.070 | 156.80 |
| 0.004 | 8.96 | 0.038 | 85.12 | 0.071 | 158.04 |
| 0.005 | 11.20 | 0.039 | 87.36 | 0.072 | 161.28 |
| 0.006 | 13.44 | 0.040 | 89.60 | 0.073 | 163.52 |
| 0.007 | 15.68 | 0.041 | 91.84 | 0.074 | 165.76 |
| 0.008 | 17.92 | 0.042 | 94.08 | 0.075 | 168.00 |
| 0.009 | 20.16 | 0.043 | 96.32 | 0.076 | 170.24 |
| 0.010 | 22.40 | 0.044 | 98.56 | 0.077 | 172.48 |
| 0.011 | 24.64 | 0.045 | 100.80 | 0.078 | 174.72 |
| 0.012 | 26.88 | 0.046 | 103.04 | 0.079 | 176.96 |
| 0.013 | 29.12 | 0.047 | 105.28 | 0.080 | 179.20 |
| 0.014 | 31.36 | 0.048 | 107.52 | 0.081 | 181.44 |
| 0.015 | 33.60 | 0.049 | 109.76 | 0.082 | 183.68 |
| 0.016 | 35.84 | 0.050 | 112.00 | 0.083 | 185.92 |
| 0.017 | 38.08 | 0.051 | 114.24 | 0.084 | 188.16 |
| 0.018 | 40.32 | 0.052 | 116.48 | 0.085 | 190.40 |
| 0.019 | 42.56 | 0.053 | 118.72 | 0.086 | 192.64 |
| 0.020 | 44.80 | 0.054 | 120.96 | 0.087 | 194.88 |
| 0.021 | 47.04 | 0.055 | 123.20 | 0.088 | 197.12 |
| 0.022 | 49.28 | 0.056 | 125.44 | 0.089 | 199.36 |
| 0.023 | 51.52 | 0.057 | 127.68 | 0.090 | 201.60 |
| 0.024 | 53.76 | 0.058 | 129.92 | 0.091 | 203.84 |
| 0.025 | 56.00 | 0.059 | 132.16 | 0.092 | 206.08 |
| 0.026 | 58.24 | 0.060 | 134.40 | 0.093 | 208.32 |
| 0.027 | 60.48 | 0.061 | 136.64 | 0.094 | 210.56 |
| 0.028 | 62.72 | 0.062 | 138.88 | 0.095 | 212.80 |
| 0.029 | 64.96 | 0.063 | 141.12 | 0.096 | 215.04 |
| 0.030 | 67.20 | 0.064 | 143.36 | 0.097 | 217.28 |
| 0.031 | 69.44 | 0.065 | 145.60 | 0.098 | 219.52 |
| 0.032 | 71.68 | 0.066 | 147.84 | 0.099 | 221.76 |
| 0.033 | 73.92 | 0.067 | 150.08 | 0.100 | 224.00 |
| 0.034 | 76.16 |  |  |  |  |

## SIZE AND STRENGTH OF CAST-IRON COLUMNS.

Capable of Sustaining Load, Expressed in Cwts.
DIAMETER IN INCHES.

| H'g't. <br> Ft.t. | $2 \frac{1}{2}$ | 3 | $3 \frac{1}{2}$ | 4 | $4 \frac{1}{2}$ | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 119 | 178 | 247 | 320 | 418 | 522 | 607 | 1032 | 1333 | 1716 | 2119 | 2570 | 3050 |
| 6 | 60 | 105 | 143 | 232 | 318 | 400 | 501 | 591 | 1015 | 1397 | 1600 | 2150 | 3040 |
| 8 | 40 | 91 | 165 | 214 | 288 | 379 | 479 | 573 | 980 | 1289 | 1659 | 2045 | 2490 |
| 10 | 32 | 65 | 111 | 172 | 242 | 327 | 427 | 525 | 924 | 1224 | 1603 | 2007 | 2450 |
| 12 | 26 | 55 | 97 | 156 | 220 | 301 | 394 | 497 | 887 | 1161 | 1564 | 1910 | 2900 |

## HOPKINS' HANDY NOTES AND QUE,RIES.

## LIST OF EXTRAS ON BAR IRON.

| シxTrA SIZES. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rounds and Squares. |  | Flats. |  | Flats. |  |
| No. 6 and ${ }_{1} \frac{3}{5} \mathrm{in}$. | 1.3 | ${ }^{\frac{1}{3} 2} \times 3$ | 4.0 |  | 1.5 |
| No. 5 | 1.0 | $\frac{1}{32} \times \frac{1}{8}$ | 3.5 | ${ }_{7}^{7} \times$ | 1.3 |
| No. 4. | 0.8 | $\frac{11}{32} \times \frac{5}{32}$ | 3.0 | 近 $\& \frac{9}{16} \times$ | 1.2 |
| Nos. 2, 3, $\frac{1}{4}$ \& $\cdot \frac{\cdot 1}{32}$ | 0.7 | ${ }^{\frac{1}{3} \frac{1}{2} \times{ }^{3} 6}$ | 2.5 | $\frac{1}{2} \& \frac{9}{16} \times \frac{1}{4}$ to | 1.1 |
|  | 0.6 |  | 3.6 | $\frac{5}{8} \& \frac{1}{16} \times{ }^{\frac{3}{6}}$ | 0.9 |
|  | 0.5 | $\frac{3}{8} \times \frac{1}{8}$. | 3.0 | $\frac{5}{5} \& \frac{1}{16} \times \frac{1}{4} \& \frac{5}{6} \ldots \ldots$. | 0.7 |
|  | 0.4 | $\frac{3}{8} \times \frac{5}{3}$ | 2.5 | $\frac{5}{8} \& \frac{1}{3} \times \times \frac{3}{8}$ to $\frac{1}{2} \ldots .$. | 0.5 |
|  | 0.2 | $\frac{3}{8} \times \frac{1}{6}$ | 2.3 | $\frac{3}{4} \times \frac{1}{16} \ldots \ldots . . . . . .$. | 0.7 |
| $\frac{5}{8} \&$ | 0.1 | $\frac{3}{8} \times 1^{\frac{3}{6}}$ | 2.0 | ${ }_{4}^{4} \times \frac{1}{4}$ ¢ ${ }^{\frac{1}{4}}$ \& $\frac{5}{16} \ldots \ldots \ldots . .$. | 0.5 |
| $2 \frac{1}{8} \text { to } 2$ | 0.1 | $\frac{3}{8} \times{ }^{7}$ | 1.8 |  | 0.4 |
| 3 to $3 \frac{1}{2}$. | 0.3 | $\frac{3}{8} \times 1$. | 1.6 |  | 0.6 |
| $3{ }_{1} \frac{9}{6}$ to 4 | 0.5 | $\frac{1}{32} \times \frac{3}{32}$ | 3.0 | $\frac{7}{8} \times \frac{1}{4} \&$ | 0.5 |
| $4 \frac{1}{16}$ to $4 \frac{1}{2} \ldots \ldots . .$. | 0.6 | ${ }^{\frac{1}{3} 1} \times{ }^{\frac{1}{3} 8}$ | 2.6 | $\frac{7}{8} \times \frac{3}{8}$ to $\frac{16}{4} \cdots \cdots \cdots \ldots .$. | 0.4 |
| $41_{16}^{9}$ to 5.......... |  | $\frac{1}{31} \times{ }^{\frac{1}{2}}$ | 2.5 | $1 \times \frac{3}{6} \cdots \ldots . . . . . . . . .$. | 0.4 |
|  |  | $\frac{1}{3} \times{ }^{\frac{5}{2}}$ |  | 1 to $6 \times \frac{1}{4} \times \frac{5}{16} \ldots$ | 0.2 |
| half round. |  | ${ }^{\frac{1}{3} 1} \times 1 \times{ }^{3}$ | 1.8 | 2 to $4 \times 1 \frac{9}{16}$ to 2. | 0.2 |
| $\frac{7}{8}$ to $1 \frac{1}{4}$ |  | ${ }^{\frac{1}{32}} \times{ }^{\frac{7}{32}}$ | 1.6 | 2 to $4 \times 2 \frac{1}{16}$ to 3 . | 0.3 |
| $\begin{aligned} & 8 \\ & 4 \\ & 4 \end{aligned} \&$ | 0.6 | $\frac{11}{3} \times \times$ 1 ${ }^{\frac{1}{4}}$ | 1.4 | $4{ }^{\frac{1}{1} 6}$ to $6 \times 1 \frac{1}{16}$ to 2 | 0.2 |
| $\frac{5}{8} \& \frac{1}{8} \frac{1}{16}$ | 0.7 | $\begin{aligned} & 7_{7}^{2} \\ & 7 \end{aligned} \hat{X}^{\frac{1}{8}}$ | 2.3 | $4{ }_{1}^{16}$ to $6 \times 2^{1}{ }^{1} 5$ to 3 | 0.4 |
| $\frac{1}{2} \& \frac{1}{1} 6$ | 0.9 |  | 1.9 |  |  |
| $\frac{3}{8}$ \& ${ }^{\frac{7}{6}}$ |  | ${ }_{16}^{7} \times{ }^{3} 6$ | 1.6 |  |  |

For catting to specific lengths, 10 to 20 feet, 0.2 cent extra.
CAST STEEL CROWBARS.

| Weight............... | - | 8 | 10 | 12 | 14 | 16 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inch Square........ 1 | - | $\frac{7}{8}$ | 1 | $1{ }_{16}^{16}$ | $1 \frac{1}{x}$ | ${ }_{1}{ }_{16}^{3}$ | $1 \frac{1}{4}$ |
| Inches in Length. | - | 48 | 54 | 62 | 63 | 66 | 67 |
| Weight ............. | 20 | 22 | 24 | 26 | 28 | 30 |  |
| Inch Square......... | $1 \frac{1}{4}$ | $1_{16}^{5}$ | $1{ }^{3}$ | $1 \frac{3}{x}$ | 112 | 112 |  |
| Inches in Length.. | 72 | 72 | 72 | 74 | 74 | 76 |  |

## COPPER SHEATHING SHEETS.

Sheathing is the name applied only to sheets measuring $14 x 48$ inches. Showing Wt. per sheet. No. of sheets per case and ${ }^{\text {Wht }}$ per case.

| Oz. per sq. foot. . |
| :--- |
| Pounds per sheet. |
| Sheets per case... |
| Pounds per case. . |


| 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4.10 | 5.4 | 5.13 | 6.7 | 7. | 7.9 | 8.3 | 8.12 | 9.5 |
| 125 | 115 | 100 | 100 | 85 | 80 | $\frac{75}{}$ | $\frac{70}{6}$ | $\frac{65}{}$ |
| 583 | 604 | 583 | 642 | 595 | 607 | $\frac{613}{}$ | $\frac{613}{}$ | $\frac{607}{}$ |

## WEIGHT OF HOOP IRON.

One Foot in Length.

| Thickness. |  | $\frac{5}{8}$ | $\frac{3}{4}$ | $\frac{7}{8}$ | 1 | 118 | 114 | 138 | 112 | 15 | 13 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Inch. | L.b. | Lb. |
| 21. | . 0334 | . 0716 | . 0861 | . 1 | . 115 | . 129 | . 144 | . 158 | . 172 | . 197 | . 201 | . 229 |
| 20 | . 0375 | . 0731 | . 0938 | . 109 | . 125 | . 141 | . 156 | . 172 | . 188 | . 203 | . 219 | . 25 |
| 19 | . 0438 | . 0911 | . 109 | . 128 | . 146 | . 164 | . 182 | . 2 | . 219 | . 238 | 257 | . 292 |
| 18 | . 05 | . 104 | . 125 | . 146 | . 167 | . 188 | . 208 | . 229 | . 25 | . 271 | . 292 | . 333 |
| 17 | . 0563 | . 117 | . 141 | . 164 | . 188 | . 211 | . 234 | . 258 | . 281 | . 305 | . 328 | . 375 |
| 16 | . 0625 | . 13 | . 156 | . 182 | . 208 | . 234 | . 26 | . 286 | . 313 | . 339 | . 365 | . 417 |
| 15 | . 075 | . 156 | . 188 | . 219 | . 25 | . 281 | . 413 | . 344 | . 375 | . 307 | . 438 | . 5 |
| 14 | . 0875 | . 183 | . 219 | . 256 | . 293 | . 239 | . 366 | . 402 | . 438 | ${ }^{4} 45$ | . 512 | . 585 |
| 13 | . 1 | . 203 | . 25 | . 292 | . 333 | . 375 | . 416 | . 458 | . 5 | . 543 | . 584 | . 667 |
| 12 | . 1125 | . 234 | . 281 | . 328 | . 375 | . 422 | . 469 | . 516 | . 563 | . 609 | . 656 | . 75 |
| 11 | . 125 | . 26 | . 313 | . 365 | . 417 | . 469 | . 521 | . 573 | . 625 | . 677 | . 729 | . 833 |
| 10 | . 1406 | . 293 | . 352 | . 41 | . 469 | . 527 | . 586 | . ${ }^{\circ} 45$ | . 703 | . 762 | . 82 | . 838 |
| 9 | . 1563 | . 326 | . 391 | . 456 | . 522 | . 587 | . 652 | . 717 | . 783 | . 848 | . 913 | 1.04 |
| 8 | . 1919 | . 358 | . 43 | . 501 | . 573 | . 644 | . 716 | . 788 | . 859 | . 931 | 1 | 1.15 |
| 7 | . 1875 | . 391 | . 469 | . 547 | . 625 | . 703 | . 781 | . 859 | . 938 | 1.02 | 1.1 | 1.25 |
| 6 | . 2031 | . 423 | . 508 | . 593 | . 677 | . 762 | . 836 | . 931 | 1.02 | 1.1 | 1.19 | 1.35 |
|  | . 2188 | . 456 | . 547 | . 638 | . 729 | . 82 | . 912 |  | 1.09 | 1.19 | 1.28 | 1.46 |
|  | . 2344 | . 488 | . 586 | . 683 | . 781 | . 879 | . 977 | 1.07 | 1.17 | 1.27 | 1.37 | 1.56 |

## HOOP AND SCROLL IRON.

Number of Feet in a Bundle of 56 Pounds.

| HOOP IRON. |  |  | SCROLL IRON. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Size. |  | Feet in Bundle. | Size. |  | Feet in Bundle. |
| Width. | Thick. |  | Width. | Thick. |  |
| $\frac{5}{8}$ inches. | No. 21 | 815 | $\frac{1}{2}$ inches. | No. 10 | 240 |
| $\frac{3}{4}$ inches. | No. 20 | 630 | $\frac{5}{8}$ inches. | No. 16 | 430 |
| $\frac{7}{8}$ inches. | No. 19 | 450 | $\frac{5}{8}$ inches. | No. 14 | 347 |
| 1 inches. | No. 18 | 360 | $\frac{5}{8}$ inches. | No. 10 | 190 |
| $1 \frac{1}{8}$ inches. | No. 17 | 278 | $\frac{3}{4}$ inches. | No. 16 | 360 |
| $1 \frac{1}{4}$ inches. | No. 16 | 217 | $\frac{3}{4}$ inches. | No. 14 | 290 |
| $1 \frac{1}{2}$ inches. | No. 15 | 160 | $\frac{3}{4}$ inches. | No. 12 | 208 |
| $1 \frac{3}{4}$ inches. | Ko. 15 | 139 | $\frac{3}{4}$ inches. | No. 10 | 160 |
| 2 inches. | No. 14 | 110 | $\frac{7}{8}$ inches. | No. 16 | 310 |
|  |  |  | $\frac{7}{8}$ inches. | No. 14 | 249 |
|  |  | - | ${ }^{\frac{7}{8}}$ inches. | No. 12 | 175 |
|  |  |  | 1 inches. | No. 16 | 270 |
|  |  |  | 1 inches. | No. 14 | 216 |
|  |  |  | 1 inches. | No. 12 | 152 |

## BREAKING STRAIN UPON VARIOUS METALS.

The size of the rod tested being in each case one inch square, and the number of pounds the actual breaking strain.


## Weight of Flat Iron． <br> WEIGHT OF RUNNING FOOT IN FOUNDS．

| d |  <br>  |
| :---: | :---: |
|  |  <br>  |
|  | が <br>  |
|  |  <br>  |
|  |  <br>  |
|  | 거구ㅇㅕㅒ <br>  |
|  |  |

[^5]
## Weight of Flat Iron－Continued． <br> WEIGET OF RUNNING FOOT IN POUNDS．

| － |  <br>  |
| :---: | :---: |
| $\stackrel{\infty}{\sim}$ |  <br>  |
| 号吕 ${ }^{\text {a }}$ |  <br>  |
| $$ |  <br>  |
| $\underset{\sim}{\sim}$ | ถ్చに <br>  |
| $\stackrel{0}{7}$ | ず <br>  |
|  |  |


| － |  <br>  |
| :---: | :---: |
| $\stackrel{\infty}{\stackrel{\infty}{i}}$ |  <br>  |
|  |  <br>  |
|  |  <br>  |
|  |  <br>  |
| $\underset{\sim}{\circ}$ |  <br>  |
|  |  |

## FLAT IRON．

NUMBER OF FEET IN A BUNDLE OF 112 POUNDS．


Round and Square Iron． NUMBER OF FEET IN A BUNDLE OF 112 POUNDS．

| ROUND IRON． | SQUARE IRON． |  |  |
| :---: | :---: | :---: | :---: |
| Size． |  | Size． | Feet in Bundle． |
| 3－16 inch． | 3－16 | inch． | 958 |
| 3／4 66 | 1／4． |  | 540 |
| 5－16 ${ }^{6}$ | 5－16 | ${ }_{6} 6$ | 345 |
| $3 / 86$ | 3／8 | 6 6 | 240 |
| $7 \cdot 16$＇0 | 7－16 | ${ }^{6}$ | 176 |
| 1／2 68 | 12. | 36 | 135 |
| 9－16 ${ }^{6}$ | 9－16 | ${ }^{6}$ | 107 |
| 5／8 6 | 5／8 | 6 | 87 |
| 11－16 ${ }^{6}$ | 11－16 | \％ | 70 |
| $3 / 4$＇．．． | 3／4 | 6 | 60 |

## Round Bar Iron．

WEIGHT OF A RUNNING FOOT IN POUNDS．

|  | Wt per． foot． Lbs． |  | Wt．per foot． Lbs． | 号号号 | Wt．per foot． Lbs． | 島运号 | Wt．per foot． Lbe． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1－16 | ． 01 | 1 1－16 | 2.975 | 23／ | 11.9 | 4 1／8 | 44.85 |
| 1／8 | ． 0411 |  | 3.338 | $3 / 4$ | 13.3 | $3 / 4$ | 47.54 |
| 3－16 | ． 0925 | 3－16 | 3.725 | 3／8 | 14.75 | 3／8 | 50.33 |
| 1／4 | ． 1651 | $1 / 1$ | 4.12 | $1 / 2$ | 16.4 | $1 / 2$ | 53.32 |
| 5－16 | ． 2573 | 5－16 | 4.545 | 5／8 | 18.1 | 5／8 | 56.34 |
| 3／8 | ． 371 | 3／8 | 5. | $3 / 4$ | 19.85 | $3 / 4$ | 59.44 |
| 7－16 | ． 505 | 7－16 | 5.455 | 7／8 | 21.5 | 7／8 | 62.62 |
| $1 / 2$ | ． 657 | 1／2 | 5.945 | 3 | 23.7 |  | 65.88 |
| 9－16 | ． 835 | 9－16 | 6.445 | 1／8 | 25.55 | 2／8 | 69.23 |
| 5／8 | 1.031 | 5／8 | 6.975 | 1／4 | 27.81 | $3 / 4$ | 72.65 |
| 11－16 | 1.235 | 11－16 | 7.52 | 3／8 | 29.85 | 3／8 | 76.18 |
|  | 1.475 | 3／4 | 8.05 | $1 / 2$ | 32.25 | 3 | 79.75 |
| 13－16 | 1.74 | 13－16 | 8.65 | 5／8 | 34.45 | 58 | 83.45 |
|  | 2.015 |  | 9.25 | 3／4 | 37.1 | $3 / 4$ | 87.20 |
| 15－16 | 2.317 | 15－16 | 9.9 | 7／8 | 39.5 | 7／8 | 91.50 |
| 1 | 2.625 | 2 | 10.55 | 4 | 41.95 | 6 | ． 95. |

FOR STEEL multiply tabular number above（for size） 1.01.

## SQUARE BAR IRON.

WEIGHT OF A RUNNING FOOT, IN POUNDS.

| Thick <br> Inch. | Wt. per <br> ft. Lbs. | Thick <br> Inch. | Wt. per <br> ft. <br> Lbs. | Thick <br> Inch. | Wt. per <br> ft. Lbs. | Thick <br> Inch. | Wt. per <br> ft. Lbs. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1-16$ | .0131 | $11-16$ | 3.80 | $21-8$ | 15.15 | $41-8$ | 57.20 |
| $1-8$ | .0525 | $1-8$ | 4.25 | $1-4$ | 17. | $1-4$ | 60.75 |
| $3-16$ | .1182 | $3-16$ | 4.73 | $3-8$ | 18.5 | $3-8$ | 64.35 |
| $1-4$ | .2103 | $1-4$ | 5.25 | $1-2$ | 25.5 | $1-2$ | 68. |
| $5-16$ | .320 | $5-16$ | 5.78 | $5-8$ | 23.1 | $5-8$ | 72. |
| $3-8$ | .4735 | $3-8$ | 6.35 | $3-4$ | 25.2 | $3-4$ | 75.65 |
| $7-16$ | .6445 | $7-16$ | 6.95 | $7-8$ | 27.5 | $7-8$ | 79.80 |
| $1-2$ | .84 | $1-2$ | 7.55 | 3 | 30.05 | 5 | 83.8 |
| $9-16$ | 1.063 | $9-16$ | 8.2 | $1-8$ | 32.75 | $1-8$ | 83.25 |
| $5-8$ | 1.314 | $5-8$ | 8.85 | $1-4$ | 35.5 | $1-4$ | 92.5 |
| $11-16$ | 1.59 | $11-16$ | 9.57 | $3-8$ | 33.25 | $3-8$ | 97.15 |
| $3-4$ | 1.8 | $3-4$ | 10.30 | $1-2$ | 41.15 | $1-2$ | 101. |
| $13-16$ | 2.221 | $13-16$ | 11.05 | $5-8$ | 44.15 | $5-8$ | 105.8 |
| $7-8$ | 2.575 | $7-8$ | 11.83 | $3-4$ | 47.20 | $3-4$ | 110.5 |
| $15-16$ | 2.95 | 15.16 | 12.62 | $7-8$ | 50.25 | $7-8$ | 115.15 |
| 1 | 3.35 | 2 | 13.4 | 4 | 53.75 | 6 | 120.25 |

FOR STEEL multiply tabular number above (for size) by 1.01.

## BAND IRON.

NUMBER OF FEET IN A BUNDLE OF 112 POUNDS.

| Size. |  | Feet in Bundle. | Size. |  | Feet in Bundle. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Width. | Thick. |  | Width. | Thick. |  |
| $13 / 8$ inches. | No. 12 | 265 | 23/4 inches. | No. 12 | 110 |
| 11/8 | " 10 | 213 | 23/4 6 | 61 <br> 6 | 88 |
| $11 / 6$ | " 7 | 160 | 234 6 | 6 8 | 72 |
| 11/4 " | 612 <br> 610 | 246 | 23/4 | $6{ }^{6} 6$ | 60 |
| 114 | ${ }^{6} 10$ | 190 | 3 6 6 | "12 | 101 |
| 114 | 6  <br> 6 7 | 145 | 36 | "6 10 | 80 |
| $11 / 2$ | $\begin{array}{ll}66 & 12 \\ 6 & 12\end{array}$ | 205 | 36 | 68 <br> 68 | 66 |
| 11/2 | $6{ }_{6} 10$ | 160 | 3 6 6 | 6 <br> 6 | 57 |
| $11 / 2$ | 6  <br> 6 7 | 120 | 3346 | "6 10 | 75 |
| $13 / 4$ | 61 <br> 6 | 175 | 314 6 6 | 168 | 60 |
| 13/4 | 66 <br> 6 | 138 | 31/4 6 | 6 6 <br> 6  | 50 |
| 134 | " 8 | 110 | $31 / 26$ | [610 | 69 |
| $13 / 46$ | " 7 | 100 | $31 / 26$ | " 8 | 57 |
| 2 | ". 12 | 155 | $31 / 26$ | $\checkmark 6$ | 48 |
| 2 " | "6 10 | 120 | 4 6 | " 10 | 60 |
| 26 | 6 8 | 99 | 4 " | 16 | 50 |
| 2 | 6 7 | 90 | 46 | 6 6 | 40 |
| $2{ }^{\prime}$ | "6 6 | 81 | $41 / 2$ | " 10 | 52 |
| 21/4 " | "12 | 135 | $41 / 20$ | " 5 | 43 |
| $21 / 4$ | " 10 | 105 | 41/2 " | 6 6 | 35 |
| 23* | " 8 | 88 | 5 " | 6 10 | 48 |
| 214 6 | " 6 | 72 | 56 | " 8 | 40 |
| 21/2 6 | ${ }^{6} 112$ | 120 | 56 | $6 \quad 6$ | 84 |
| 21/2 6 | " 10 | 95 | 6 \% | " 10 | 40 |
| 21/2 6 | " 8 | 77 | 6 6 | " 8 | 32 |
| 21/2 " | " | 65 | '6 | 6 | 26 |

## HOPIIINS' HANDY NOTES AND QUERIES.

## Weight of Sheet and Plate Iron.

THICKNESS BY BIRMINGHAM WIRE GAUGE AND INCHES, WEIGHT OF A SQUARE FOOT IN POUNDS.

| THICKNESS. |  | Weight Pounds. | thickness. |  | Weight Pounds. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B. W. Gauge. | Part of an inch. |  | B. W. Gauge. | Part of an incn. |  |
| 36 | . 004 | . 126 | 11 | . .120 | 4.48 |
| 35 | . 005 | . 202 |  | 1/8 or .125 | 5.054 |
| 34 | . 007 | . 283 | 10 | . 134 | 5.426 |
| 33 | . 008 | . 322 | 9 | . 148 | 5.98 |
| 32 | . 009 | . 364 |  | 5-32 or . 1562 | 6.305 |
| 31 | . 010 | . 405 | 8 | . 165 | 6.605 |
| 30 | . 012 | . 485 | 7 | . 180 | 7.27 |
| 29 | . 013 | . 526 |  | 3-16 or . 1875 | 7.578 |
| 28 | . 014 | . 595 | 6 | . 203 | 8.005 |
| 27 | . 016 | . 677 |  | 7-32 or . 2187 | 8.79 |
| 26 | . 018 | . 755 | 5 | . 22 | 8.912 |
| 25 | . 020 | . 811 | 4 | . 238 | 9.62 |
| 24 | . 022 | . 912 |  | $3 / 4$ or .25 | 10.09 |
| 23 | . 025 | 1.018 | 3 | . 259 | 10637 |
| 22 | . 028 | 1.137 |  | 9-32 or . 2812 | 11.35 |
|  | 1-32 or . 03125 | 1.259 | 2 | . 284 | 11.525 |
| 21 | . 032 | 1.31 | 1 | . 3 | 12.15 |
| 20 | . 035 | 1.416 |  | 5.16 or . 3525 | 12.58 |
| 19 | . 042 | 1.695 | 0 | . 340 | 13.750 |
| 18 | . 049 | 1.075 |  | 11-32 or . 3437 | 13.875 |
| 17 | . 058 | 2.35 |  | $3 / 3$ or . 375 | 15.10 |
| 16 | . 065 | 2.637 | 00 | . 380 | 15.26 |
|  | 1-16 or . 0625 | 2.518 |  | 13.32 or . 4062 | 16.34 |
| 15 | . 072 | 2.92 | 000 | . 425 | 17.125 |
| 14 | . 083 | 3.35 |  | $8-16$ or . 4375 | 17.65 |
|  | 3-32 or . 0937 | 3.78 | 0000 | 15-32 or ${ }^{.454}$ | 18.30 |
| 13 | . 095 | 3.85 |  | $15-32$ or . 4607 | 18.90 |
| 12 | . 100 | 4.4 | 00000 | $1 / 2$ or . 50 | 20.20 |

## Weight of Sheet and Plate Iron.

THICKNESS IN INCEES. WEIGHT OF A SQUARE FOOT IN POUNDS.

| Inches Thick. | Lbs. per Square Foot | Inches Thlck. | Lbs. per Square Poot | Inches Thick. |  | Lbs. per Square Foot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9-16 | 22.5 | 1 3/4 | 70.62 | 3 | 7/8 | 156.51 |
| 3/8 | 25.21 | 13-16 | 73.14 | 4 |  | 161.55 |
| 11-16 | 27.75 | 7/8 | 75.58 |  | 1/8 | 166.6 |
| 1246 | 30.25 | 15-16 | 78.20 |  | $1 / 4$ | 171.76 |
| 13-16 | 32.75 | 2 | 80.75 |  | $3 / 8$ | 176.71 |
| \% 78 | 35.26 | 1/8 | 85.75 |  | 准 | 181.77 |
| 15-16 | 37.75 | 14 | 90.81 |  | 5/8 | 186.79 |
| 1 | 40.35 | 3/8 | 95.86 |  | 3/4 | 191.84 |
| 1-16 | 42.87 | 1/2 | 100.9 |  | 7/8 | 196.9 |
| 3/8 | 45.4 | 5/8 | 105.95 | 5 |  | 201.85 |
| 3-16 | 47.9 | 3/4 | 111. |  | 1/8 | 206.9 |
| $1 / 4$ | 60.45 | 7/8 | 116.1 |  | $1 /$ | 211.95 |
| 5-16 | 52.96 | $3 \%$ | 121.15 |  | 3/8 | 217. |
| 3/8 | 55.45 | 1/8 | 126.21 |  | $1 / 3$ | 222.05 |
| 7-16 | 58.01 | 1/4 | 131.26 |  | 5/8 | 227.01 |
| 泩 | 60.52 | 3/8 | 136.32 |  | 3 | 232.15 |
| 9-16 | 63.05 | \% | 141.37 |  | 7/8 | 237.2 |
| \% | 65.58 | 5/8 | 146.41 | 6 |  | 242.25 |
| 11-16 | 68.11 | 3/4 | 151.46 |  |  |  |

[^6]Weight and Thickness of Boiler Iron.

| 1-8 | nch | igh | 55 lb | sq. | No. 1 | ' | ...5-16 | t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3-16 |  | ، 6 | $7 \frac{1}{2}$ " |  | No. 3 |  | ...9-32 | " |
| 1-4 | ، | '6 | 10 '6 | " | No. 4 | ' | ...1-4 | " |
| 5-16 | ، | '6 | $12 \frac{1}{2}$ " | 6 | No. 5 | " | ...7-32 | " |
| 3-8 | " | " | 15 " | " | No. 7 | ، | ...3-16 | ، |
| 7-16 | " | " | $17^{\frac{1}{3}} 6$ | " |  |  |  |  |
| 1-2 | " | " | $20^{6}$ | " |  |  |  |  |

## Thickness of Boiler Iron Required

and pressures allowed by the laws of the united states.
Pressure equivalent to the Standard for a Boiler 42-in. in diameter and $\frac{1}{4}$ in thickness.

| 范害 | Diameter in inches. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E. | 34 | 36 | 38 | 40 | 42 | 44 | 46 |
|  | Lbs. |
| 5 | 169.9 | 160.4 | 152. | 144.4 | 137.5 | 131.2 | 125.5 |
| $4 \frac{1}{2}$ | 158.5 | 149.7 | 141.8 | 134.7 | 128.3 | 122.5 | 117.2 |
| $4 \frac{1}{4}$ | 147.2 | 139.1 | 131.8 | 125.1 | 119.2 | 113.7 | 108.8 |
| 4 | 135.9 | 128.3 | 121.6 | 115.5 | 110. | 105 | 100. |
| $3{ }_{3}$ | 124.5 | 117.6 | 111.3 | 105.9 | 100.8 | 96.2 | 92. |
| $3 \frac{1}{3}$ | 113.2 | 106.9 | 101.3 | 96.2 | 91.7 | 87.5 | 83. |
| 3 | \$101.9 | 96.2 | 91.2 | 82.6 | 82.5 | 78.7 | 75.. |

Number of Burden's Rivets in 100 Lbs.

|  | Thickness in inches. |  |  |  |  | Thickness in inches. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1-2 | 5-8 | \|11-16 | 3-4 |  | 1-2 | 5-8 | \|11-16| | 3-4 |
| $\frac{3}{4}$ | 1,092 | 665 |  |  | $3 \frac{1}{4}$ | 433 | 267 | 212 | 180 |
| $\frac{7}{8}$ | 1,027 | 597 |  |  | $\frac{1}{2}$ | 413 | 248 | 201 | 169 |
| 1 | 940 | 538 | 450 |  | $\frac{3}{4}$ | 395 | 241 | 192 | 160 |
| $\frac{1}{8}$ | 840 | 512 | 415 |  | , |  | 230 | 184 | 158 |
| $\frac{1}{1}$ | 797 | 487 | 389 | 356 | $\frac{1}{4}$ |  | 220 | 177 | 150 |
| 3 | 760 | 460 | 370 | 329 | $\frac{1}{2}$ |  | 210 | 171 | 146 |
| $\frac{1}{2}$ | 730 | 440 | 357 | 280 |  |  | 200 | 166 | 138 |
| $\frac{8}{8}$ | 711 | 420 | 340 | 271 | 5 |  | 190 | 161 | 135 |
| $\frac{3}{4}$ | 693 | 390 | 325 | 262 | $\frac{1}{4}$ |  | 180 | $1: 6$ | 130 |
| $\frac{7}{8}$ | 648 | 375 | 312 | 257 | , |  | 172 | $1: 1$ | 124 |
| 2 | 608 | 360 | 297 | 243 | $\frac{3}{4}$ |  | 164 | 145 | 120 |
| $\frac{1}{8}$ | 573 | 354 | 289 | 237 | 6 |  | 157 | 140 | 115 |
| $\frac{1}{1}$ | 555 | 347 | 280 | 232 | $\frac{1}{4}$ |  | $1: 0$ | 138 | 111 |
| $\frac{1}{2}$ | 525 | 335 | 260 | 220 | , |  | 146 | 134 | 10: |
| $\frac{3}{4}$ | 500 | 312 | 242 | 208 | ${ }^{3}$ |  | 143 | 129 | 104 |
| 3 | 460 | 290 | 224 | 197 | 7 |  | 140 | 125 | 100 |

## IRON CLAD MANUFACTURING CO．

LARGEST MIANUEACTERERS OF

## Galvanized Sheet－Iron Goods

In the United States，such as
Coal Hods，Ash Cans，Water and Fire Buckets， GALVANIZED IRON SPRINKLERS， refrigerator or drip pans， WELL BUCKETS，OIL TANKS，ETC． Also Manufacturers of the Justly－Celebrated

## IRON CLAD MILK CANS

IN NEW YORK，PHILADELPHIA，CINCINNATI，BALTIMORE， CHICAGO，BOSTON AND ST．LOUIS PATTERNS．

## GALVANIZED IRON RANGE BOILERS，

 fry pans，rivets，etc．IRON CLAD MANUFACTURING CO．， 22 CLIFF ST．，NEW YORK．
1888．BERRIDGE＇S IMPROVED 1888.


No．2．For Tin and Iron．Price，$\$ 3.00$ ．
No．1．For Tin．Price $\$ 1.75$. Are now complete with the Adjustable Jaw to take up the wear，and Slotted Bolt Head used to turn in the edge of pipe．
No Tool Made that will do the Work of the

## DOUBLE CUTTING SHEARS．

They are needed every day in the Tin Shop for cutting off old bottoms of Boilers，Pails，Tea Kettles，etc．，to be repaired．Also for Cutting Water Conductor Pipe and Repairing Tin Roofs．They are indispensable in setting up stoves．Metals in sheets can be cut as well as Pipe and Cylinders of every description．They will soon save their cost in a saving of time and stock．
PECK，STOW \＆WILCOX CO．，New York，General Agency．

## HOPKINS＇HANDY NOTES AND QUERIES．

## GALVANIZED SHEET IRON．

［From＂The Volta Iron Co．，＂Pittsburgh，Pa．］

TABLE，showing Gauges，with Weights per Square Foot；List Price per Pound；Cost per Square Foot at List，together with Cost per Pound and per Square Foot at Different Discounts， ranging from 35 per cent．to 75 per cent．
In this Table prices are calculated to three places of decimals，which is sufficiently accurate for all practical purposes．
岁

 S． సి జి \％




 ట్రిల్రియ认ें

岕 ㅇ్ట i


## HOPKINS' HANDY NOTES AND QUERIES.

SHEET ZINC.

| $\begin{aligned} & \dot{8} \\ & \dot{E} \\ & \hline \end{aligned}$ |  |  | Approximate Weight per Sheet. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { N } \\ & 0 \\ & \text { in } \end{aligned}$ |  |  | $\begin{gathered} 24 \\ x \\ 84 \end{gathered}$ | $\begin{gathered} 26 \\ x \\ 84 \end{gathered}$ | $\begin{gathered} 28 \\ x \\ 84 \end{gathered}$ | $\begin{gathered} \hline 30 \\ \mathbf{x} \\ 84 \end{gathered}$ | $\begin{gathered} 32 \\ x \\ 84 \end{gathered}$ | 34 <br> x <br> 84 | 36 <br> x <br> 84 | 40 $x$ 84 |
|  |  | oz, | lbs. |
| 6 | 29 | 7 | $6 \frac{1}{8}$ | 65 | $7 \frac{1}{8}$ | $7 \frac{5}{8}$ | $8 \frac{1}{4}$ | - $8 \frac{3}{4}$ | $9 \frac{1}{4}$ |  |
| 7 | 281 | 8 | 7 | $7 \frac{5}{8}$ | $8 \frac{1}{8}$ | $8 \frac{3}{4}$ | 93 | $9 \frac{1}{8}$ | $10 \frac{1}{2}$ |  |
| 8 | 28 | 9 | $7 \frac{7}{8}$ | $8 \frac{1}{2}$ | $9 \frac{1}{4}$ | $9 \frac{7}{8}$ | $10 \frac{1}{2}$ | $11 \frac{1}{8}$ | $11 \frac{3}{4}$ |  |
| 9 | 27 | $10 \frac{1}{2}$ | $9 \frac{1}{4}$ | 10 | 103 | 11 $\frac{1}{2}$ | $12 \frac{1}{4}$ | 13 | $13 \frac{3}{4}$ |  |
| 10 | 26 | 12 | $10 \frac{1}{2}$ | $11 \frac{1}{2}$ | 12 | 13 | 14 | 15 | 16 |  |
| 11 | 25 | $13 \frac{1}{2}$ | 12 | 13 | 14 | 15 | 16 | 17 | 18 |  |
| 12 | 24 | 15 | 13 | 14 | 15 | $16 \frac{1}{2}$ | 172 | 182 | 20 |  |
| 13 | 23 | 17 | 15 | 16 | 17 | $18 \frac{1}{2}$ | 20 | 21 | 22 | 25 |
| 14 | 22 | 19 | 17 | 18 | $19 \frac{1}{2}$ | 21 | 22 | $23 \frac{1}{2}$ | 25 | 28 |
| 15 | 21 | 22 | 19 | 21 | $22{ }_{2}^{1}$ | 24 | $25 \frac{1}{2}$ | 27 | 29 | 32 |
| 16 | 20 | 25 | 22 | 24 | $25 \frac{1}{2}$ | 27 | 29 | 31 | 33 | 36 |
| 17 | 19 | 28 | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 41 |
| 18 | 18 | 31 | 27 | $30 \frac{1}{2}$ | 32 | 34 | 36 | 38 | 41 | 45 |
| 19 | 17 | 35 | 31 | 33 | 36 | 38 | 41 | 44 | 46 | 51 |
| 20 | 16 | 40 | 35 | 38 | 41 | 44 | 47 | 50 | 53 | 59 |

## BAR AND SHEET LEAD.

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{16}$ | 3.71 | . 02 | . 014 | $1{ }_{1}^{1,6}$ | 63.2 | 5.6 | 4.4 |
| $\frac{1}{8}$ | 7.43 | . 079 | . 06 | $1 \frac{1}{8}$ | 66.87 | 6.26 | 4.91 |
| 16 | 11. | . 175 | . 136 | $1_{1,6}{ }^{1}$ | 70.51 | 6.98 | 5.5 |
| , | 14.08 | . 31 | . 245 | $1 \frac{1}{4}$ | 74.35 | 7.74 | 6.1 |
| 16 | 18.05 | . 486 | . 38 | ${ }_{1}{ }_{16}{ }^{5}$ | 78.05 | 8.55 | 6.73 |
| $1{ }^{6}$ | 22.02 | . 645 | . 549 | $1 \frac{3}{8}$ | 81.76 | 9.38 | 7.38 |
| ${ }_{1}^{7}$ | 26. | . 948 | . $7 \pm 5$ | $1{ }_{16}^{7}$ | 85.48 | 10.18 | 8.05 |
|  | 29.75 | 1.24 | . 975 | $1 \frac{1}{2}$ | 89.28 | 11. | 8.75 |
| $\frac{9}{18}$ | 33.49 | 1.55 | 1.24 | $1_{16}^{9}$ | 93. | 12.05 | 9.50 |
|  | 37.18 | 1.95 | 1.51 | $1 \frac{5}{8}$ | 96.78 | 13.15 | 10.25 |
| $\frac{1}{10}$ | 40.87 | 2.33 | 1.85 | $1 \frac{1}{1 \frac{1}{6}}$ | 100.5 | 14.15 | 11.06 |
|  | 44.58 | 2.8 | 2.2 | $1 \frac{3}{4}$ | 104.1 | 15.18 | 11.88 |
| 1 | 48.28 | 3.28 | 2.58 | $1{ }_{1}^{13}$ | 107.8 | 16.30 | 12.76 |
|  | 52.12 | 3.8 | 2.98 | 17 | 112.3 | 17.45 | 13.66 |
| ${ }^{6}$ | 56.05 | 4.35 | 3.41 | 115 | 116. | 18.10 | 14.61 |
| 1 | 59.48 | 4.95 | 3.9 | 2 | 119.6 | 19.78 | 15.58 |

SHEET LEAD IS MADE TO WEIGH, PER SQUARE FOOT: $2 \frac{1}{2}, 3,3 \frac{1}{2}, 4,4 \frac{1}{2}, 5,6,7,8,9,10$ pounds, and upwards.

Weight and Dimensions of Wrought Iron Welded Pipes. FOR GAS, STEAM AND WATER.

| Inside Diameter in inches. | Outside Diameter in inches. | Weight per foot in pounds. | Inside Diameter in inches. | Outside Diameter in inches. | Weight per foot in poands. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1/8 | 0.40 | 0.24 | 3 | 3.5 | 7.54 |
| 3 | 0.54 | 0.42 | $31 / 2$ | 4.0 | 9.05 |
| 38 | 0.67 | 0.56 | 4 | 4.5 | 10.72 |
| 3/2 | 0.84 | 0.85 | 41/8 | 5.0 | 12.49 |
| $3 / 4$ | 1.05 | 1.12 | 5 | 5.56 | 14.56 |
| $1{ }^{4}$ | 1.31 | 1.67 | 6 | 6.62 | 18.77 |
| $13 / 4$ | 1.66 | 2.25 | 7 | 7.62 | 23.41 |
| 132 | 1.95 | 2.69 | 8 | 8.62 | 28.35 |
| 2 | 2.37 | 3.66 | 9 | 9.68 | 34.07 |
| 21/2 | 2.87 | 5.77 | 10 | 10.75 | 40.64 |

Lap Welded Añerican Charcoal Iron Boiler Tubes.
TABLE OF STANDARD SIZES.

|  |  |  |  | $\begin{aligned} & \dot{\Phi} \\ & \text {. } \\ & \text { E } \\ & \text { E } \\ & \text { H } \end{aligned}$ |  |  | E. E. 高 | E E |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ins. | In ${ }^{\text {a }}$. | In8. | Ins. | Ins. | Feet. | Feet. | Ins. | Ins. | lbs |
| 1 | 3.142 | 0.856 | 2.689 | 0072 | 4.460 | 3.819 | 0.575 | 0.785 | 0.703 |
| 14.4 | 3.927 | 1.126 | 3.474 | 0.072 | 3.455 | 3056 | 0960 | 1.227 | 0.9 |
| 1\% | 4.712 | 1.334 | 4.191 | 0.083 | 2.863 | 2.547 | 1.396 | 1.767 | 1.250 |
| $1{ }^{1} /$ | 5.598 | 1.560 | 4.901 | 0.095 | 2.448 | 2.183 | 1.911 | 2.405 | 1.565 |
| 2 | 6.283 | 1.804 | 5.667 | 0.098 | 2.118 | 1.909 | 2.556 | 2. 42 | 1.951 |
| 234 | 7.069 | 2.054 | 6.484 | 0.098 | 1.850 | 1.698 | 3.314 | 3.976 | 2.233 |
| $2 \%$ | 7.854 | 2.283 | 7.172 | 0.109 | 1.673 | 1.528 | 4.094 | 4939 | 2.755 |
| $23 / 4$ | 8.639 | 2.533 | 7.957 | 0.109 | 1.508 | 1.390 | 5.139 | 5.940 | 3.045 |
| 3 | 9.425 | 2.783 | 8.743 | 0.109 | 1.373 | 1.273 | 6.083 | 7.069 | 3.333 |
| 314 | 10.210 | 3.012 | 9.462 | 0.119 | 1.268 | 1.175 | 7.125 | 8.295 | 3.953 |
| $31 / 2$ | 10.905 | 3.262 | 10.248 | 0.119 | 1.171 | 1.091 | 8.357 | 9.621 | 4.273 |
| 334 | 11.781 | 3.512 | 11.033 | 0.119 | 1.058 | 1.018 | 9.637 | 11.045 | 4 59, |
| 4 | 12.566 | 3.741 | 11.753 | 0.130 | 1.023 | 0.955 | 10.992 | 12.566 | 5.32J |
| $41 / 2$ | 14.137 | 4.241 | 13.323 | 0.130 | 0.901 | 0.849 | 14.126 | 15.c04 | 6011 |
| 5 | 15.708 | 4.72 | 14.818 | 0.140 | 0.809 | 0.764 | 17.497 | 19.635 | 7.220 |
| 6 | 28.849 | 5.699 | 17.904 | 0151 | 0.670 | 0.637 | 25.509 | 28.274 | 9.345 |
| 7 | 21.991 | 6.657 | 20.914 | 0.172 | 0.574 | 0.545 | 3t. 805 | 38.484 | 12.435 |
| 8 | 25.132 | 7.636 | 23.989 | 0.182 | 0.500 | 0.478 | 45.795 | 50.265 | 15.109 |
| 9 | 28.374 | 8.615 | 27.055 | 0.193 | 0.444 | 0.424 | 58.291 | 63.617 | 18.002 |
| 10 | 31.416 | 9.573 | 30.074 | 0.214 | 0.399 | 0.382 | 71.975 | 78.540 | 22.19 |

Light Wrought Iron Artesian Tube and Casing for Oil Wells.
STANDARD SIZES.

| Outside Dismoter in inches. | Inside Diameter in inches. | Weight per Foot, Pounds. | Outside Diameter, Inches. | Inside Diameter, Inches. | Weight per Fout, Puunds. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 13/6 | 11/2 | 1.665 | 4 1 | 4 | 5.500 |
| 23 | 2 | 2.238 | 438 | 4 4 | 6.010 |
| 2\% | 23/3 | 2.755 | 5 | 4* | 7.236 |
| $23 / 4$ | 2h | 3.045 | 53 | 5 | 7.667 |
| 3 | 2\% | 3.333 | 51/2 | 5 3-16 | 8.033 |
| 3* | 3 | 3.958 | 6 | 5\% | 9.346 |
| 3x | 31 | 4.272 | 6\% | 63 | 10064 |
| 3\% | 3\% | 4.950 | 7 | 6\% | 12.435 |
| 4 | 3x | 5.320 | 8 | 7\% | 15.109 |
|  |  |  | 8\% | 83 | 16.155 |

## MACHINE BOLTS <br> With Square Heads and Nuts.

Weight of 100 , in Pounds.

| Diamet'r | $\frac{1}{4}$ | 16 |  | ${ }^{\frac{7}{16}}$ | $\frac{1}{2}$ | $\frac{9}{16}$ | $\frac{5}{8}$ | $\frac{3}{4}$ | $\frac{7}{8}$ | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Length. |  |  |  |  |  |  |  |  |  |  |
| $1{ }^{\frac{1}{2}}$ | 4. | 7. | 10.5 | 15.2 | 22.5 | 30. | 39.5 |  |  |  |
| $1 \frac{3}{4}$ | 4.3 | 7.5 | 11.2 | 16.3 | 23.8 | 31.7 | 41.6 |  |  |  |
| 2 | 4.7 | 8. | 12. | 17.4 | 25.1 | 33.5 | 43.7 | 69. | 108. |  |
| $2 \frac{1}{4}$ | 5.1 | 8.5 | 12.7 | 18.5 | 26.4 | 35.2 | 45.8 | 72. | 112.2 |  |
| $2 \frac{1}{2}$ | 5.5 | 9. | 13.5 | 19.6 | 27.8 | 37. | 48. | 75. | 116.5 | 175 |
| $2{ }^{\frac{3}{4}}$ | 5.7 | 9.5 | 14.2 | 20.7 | 29.1 | 38.7 | 50.1 | 78. | 121.7 | 180 |
| 3 | 6.2 | 10. | 15. | 21.8 | 30.4 | 40.5 | 52.2 | 81. | 126. | 185 |
| $3 \frac{1}{2}$ | 7. | 11. | 16.5 | 24. | 33.1 | 44. | 56.5 | 87. | 134.2 | 196 |
| 4 | 7.7 | 12. | 18. | 26.2 | 35.7 | 47.5 | 60.7 | 93.1 | 142.5 | 207 |
| $4 \frac{1}{2}$ | 8.5 | 13. | 19.5 | 28.4 | 38.4 | 51. | 65. | 99. | 151. | 218 |
| 5 | 9.2 | 14. | 21. | 30.6 | 41. | 54.5 | 69.2 | 105.2 | 159.5 | 229 |
| $5 \frac{1}{2}$ | 10. | 15. | 22.5 | 32.8 | 43.7 | 58. | 73.5 | 111.2 | 168. | 240 |
| 6 | 10.7 | 16. | 24. | 35. | 46.3 | 61.5 | 77.7 | 117.3 | 176.6 | 251 |
| $6 \frac{1}{2}$ | 11.5 | 17. | 25.5 | 37.2 | 49. | 65. | 82. | 123.3 | 185. | 262 |
| 7 | 12.2 | 18. | 27. | 39.4 | 51.6 | 68.5 | 86.2 | 129.4 | 193.6 | 273 |
| $7 \frac{1}{2}$ | 13. | 19.2 | 28.5 | 41.6 | 54.3 | 72. | 90.5 | 135. | 202. | 284 |
| 8 | 13.7 | 20.7 | 30. | 43.8 | 59.6 | 75.5 | 94.7 | 141.5 | 210.7 | 295 |
|  |  |  | 34. | 48.2 | 64.9 | 82.5 | 103.2 | 153.6 | 227.7 | 317 |
| 10 |  |  | 37.5 | 52.6 | 70.2 | 89.5 | 111.7 | 165.7 | 244.8 | 339 |
| 11 |  |  | 41. | 57. | 75.5 | 96.5 | 120.2 | 177.8 | 261.8 | 360 |
| 12 |  |  | 44.5 | 61.4 | 80.8 | 103.5 | 128.7 | 189.9 | 278.9 | 382 |
| 13 |  |  |  |  | 86.1 | 110.5 | 137.2 | 202. | 295.9 | 404 |
| 14 |  |  |  |  | 91.4 | 117.5 | 145.7 | 214.1 | 313. | 426 |
| 15 |  |  |  |  | 96.7 | 124.5 | 154.2 | 226.2 | 330. | 448 |
| 16 |  |  |  |  | 102. | 131.5 | 162.7 | 238.3 | 347.1 | 470 |
| 17 |  |  |  |  | 107.3 | 138.5 | 171. | 250.4 | 364.1 | 492 |
| 18 |  |  |  |  | 112.6 | 145.5 | 179.5 | 262.6 | 381.2 | 514 |
| 19 |  |  |  |  | 117.9 | 152.5 | 188. | 274.7 | 398.2 | 536 |
| 20 |  |  |  |  | 123.2 | 159.5 | 196.5 | 286.8 | 415.3 | 558 |

## WEIGHT OF 100 BOLT ENDS.

IN POUNDS.

| 8 | 18 lbs | 12 | 115 lbs. | $1 \frac{1}{8} \times 13$ | 460 |  | 1350 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 x 10 | 34 lbs . | 12 | 165 lbs. | $1 \frac{1}{4} \times 14$ | 630 lbs . | $1 \frac{3}{4} \times 18$ | 1680 |
| ${ }_{1}^{7} \times 10$ | 42 lbs . | $\frac{7}{8} \times 12$ | 230 lbs . | $1 \frac{3}{8} \times 15$ | 850 lbs . | $1 \frac{7}{8} \mathrm{x} 19$ | 1900 |
| 12 | 71 lbs.\|| | 812 | 310 lbs. | $1 \frac{1}{2} \times 16$ | 107 | ${ }^{8} \times 20$ | 2300 lb |

## LAG OR WOOD SCREWS.

Weight of 100, in Pounds.

| Diamet'r | $\frac{16}{16}$ | $\frac{3}{8}$ | $\frac{7}{7}$ | $\frac{1}{2}$ | $\frac{9}{16}$ | $\frac{5}{8}$ | $\frac{3}{4}$ | $\frac{7}{8}$ | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Length. |  |  |  |  |  |  |  |  |  |
| $1 \frac{1}{2}$ | 4.7 | 7.1 | 9.9 | 13.9 |  |  |  |  |  |
| $1 \frac{3}{4}$ | 5.2 | 7.6 | 10.9 | 14.9 |  |  |  |  |  |
| 2 | 5.7 | 8.1 | 11.6 | 15.8 | 24. | 26.2 |  |  |  |
| $2 \frac{1}{4}$ | 6.2 | 8.7 | 12.5 | 16.9 | 25. | 27.7 |  |  |  |
| $2 \frac{1}{2}$ | 6.7 | 9.3 | 13.4 | 17.9 | 26. | 29.2 | 46.5 |  |  |
| 3 | 7.7 | 10.6 | 15.1 | 19.9 | 28. | 33.5 | 51.5 | 73. |  |
| $3 \frac{1}{2}$ | 8.7 | 11.9 | 16.5 | 22. | 31. | 36.5 | 56.5 | 79. | 103. |
| 4 | 9.7 | 13.3 | 18.6 | 24.3 | 34. | 39.5 | 61.5 | 85. | 112. |
| $4 \frac{1}{2}$ | 10.7 | 14.7 | 20.4 | 26.9 | 37. | 42.2 | 67. | 91. | 121. |
| 5 | 11.7 | 16.1 | 22.1 | 29. | 40. | 46. | 72.2 | 97. | 130. |
| $5 \frac{1}{2}$ | 12.7 | 17.5 | 23.8 | 31.5 | 43. | 49.4 | 78. | 103. | 140. |
| 6 | 13.7 | 18.9 | 25.5 | 34. | 46. | 53. | 83.5 | 110. | 150. |
| 7 |  |  | 29.2 | 39. | 52. | 60. | 94. | 125. | 170. |
| 8 |  |  | 33. | 44. | 58. | 67.5 | 104.5 | 140. | 190. |
| 9 |  |  |  | 49. | 64. | 75. | 115. | 156. | 210. |
| 10 |  |  |  | 54. | 70. | 82.5 | 126. | 172. | 230. |
| 11 |  |  |  |  | 76. | 90. | 137. | 188. | 250. |
| 12 |  |  |  |  | 82. | 98. | 148. | 204. | 270. |

## GEOMETRICAL DEFINITIONS.

Angle-An opening between two lines that meet in a point.
Right Angle-A straight line perpendicular to another.
Obtuse Angle-An angle wider than a right angle.
Acute Angle-An angle less than a right angle.
Triangle-A figure with three sides and three angles.
Equilateral Triangle-A triangle having all sides equal.
Isosceles Triangle-A triangle having two of its sides equal.
Right-Angled Triangle-A triangle having one right angle.
Obtuse-Angled Triangle-A triangle having one obtuse angle.
Quadrangle or Quadrilateral is a four-sided figure and may be a parallelogram, having its opposite sides paralleled.
Square-Having all its sides equal and all right angles.
Rectangle-Having a right angle.
Rhombus or Lozenge-Having all sides equal and no right angles.
Rhomboid-A parallelogram with no right angles.
Trapezoid-Having only two sides parallel.
Polygon-A plain figure having more than four sides.
Pentagon-Having five sides.
Hexagon-Having six sides.
Heptagon-Having seven sides.
Octagon-Having eights sides.
Nonagon-Having nine sides.
Decagon-Having ten sides.
Radius is a line extending from the center to the circumference. It is one-half of any given diameter.

## HOPKINS' HANDY NOTES AND QUERIES.

## Rails, Splices and Bolts Required for One Wile of Track.

Tons of Rails.
Rule-To find the number of tons (of $2,240 \mathrm{lbs}$.) of Rail to the mile, divide the weight per yard by ?, and multiply it hy 11, thus: for 55 lb . rail divide 56 by 7 , equal 8 , mu:tiplied by 11 , equal 88 tons, for one mile of single track.


Namber of Rails, Chairs, Joints, Splices and Bolts.

| Length of Rail. | No. of Rails, <br> Chairs or Joints. | No. of Splices. | No. of Bolts. |
| :---: | :---: | :---: | :---: |
| 18 | 584 | 1,168 |  |
| 20 | 528 | 1,056 | 2,336 |
| 21 | 503 | 1,06 | 2,112 |
| 22 | 480 | 960 | 2,012 |
| 24 | 440 | 850 | 1,920 |
| 25 | 422 | 814 | 1,760 |
| 26 | 406 | 812 | 1,688 |
| 27 | 391 | 782 | 1,624 |
| 28 | 377 | 754 | 1,564 |
| 30 | 352 | 704 | 1,508 |

No allowance made for side track in above tables.

## Number of Cross Ties for each Mile of Track.

| Centre to Centre. | No. of Ties. | Centre to Centre. | No. of Ties |
| :---: | :---: | :---: | :---: |
| 11/3 feet. | . 3,520 | $21 / 2$ feet | 2,113 |
| ${ }_{2}^{13 / 4}$ ". | ..... $\mathbf{2 , 6 4 0}$ |  | . 1,9761 |
| $23 / 4$ " $\ldots . .$. | .... 2,348 |  |  |

## Capacity of a Freight Car.

A load is nominally 10 tons of $20,000 \mathrm{lbs}$. The following can be carried: Whiskey, 60 bbls.; salt, 70 bbls.; lime, 70 bbls.; flour, 90 bbls.; eggs, 130 to 160 bbls.; flour 200 sacks; wood, 6 cords; cattle, 18 to 20 head; hogs, 50 to 60; sheep, 80 to 100 ; lumber, 6,000 feet; barley, 300 bushels,; wheat, 340 bushels; flax seed, 360 bushels; apples, 370 bushels; corn, 400 bushels; potatnes, 430 bushels; oats, 680 bushels; bran, 1,000 bushels; butter, $20,000 \mathrm{lbs}$

Weight of a Lineal Foot of Flat Steel in lbs.

| Inch. | 1/8 | $1 / 4$ | $3 / 8$ | 1/2 | 5/8 | $3 / 4$ | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{2}$ | . 213 | . 426 | . 64 |  | ... |  |  |
| 8 | . 266 | . 533 | . 8 | 1.066 |  |  |  |
| $\frac{3}{4}$ | . 319 | . 639 | . 959 | 1.29 | 1.6 |  |  |
| 1 | . 426 | . 853 | 1.28 | 1.706 | 2.133 | 2.559 |  |
| $1 \frac{1}{8}$ | . 48 | . 959 | 1.439 | 1919 | 2.399 | 2.879 | 3.81 |
| $1 \frac{1}{4}$ | . 533 | 1.066 | 1.6 | 2.133 | 2.666 | 3.200 | 4.266 |
| $1 \frac{3}{8}$ | . 586 | 1.173 | 1.759 | 2.346 | 2.933 | 3.519 | 4693 |
| $1 \frac{1}{2}$ | . 639 | 1.279 | 1.919 | 2.56 | 3.199 | 3.84 | 5.119 |
| $1{ }^{\frac{5}{5}}$ | . 693 | 1.386 | 2.079 | 2.773 | 3.465 | 4.16 | 5.546 |
| $1 \frac{3}{4}$ | . 746 | 1.493 | 2.24 | 2.986 | 3.733 | 4479 | 5.973 |
| 2 | . 853 | 1.706 | 2.559 | 3.413 | 4.266 | 5.119 | 6.826 |
| $2 \frac{1}{8}$ | . 906 | 1.813 | 2.719 | 3.626 | 4.533 | 5.439 | 7.253 |
| $2 \frac{1}{4}$ | . 96 | 1.919 | 2.879 | 3.84 | 4.799 | 5.76 | 7.68 |
| $2 \frac{3}{8}$ | 1.013 | 2.026 | 3.039 | 4.053 | 5.066 | 6.079 | 8.106 |
| $2 \frac{1}{2}$ | 1.016 | 2.133 | 3.199 | 4.266 | 5.333 | 6.399 | 8.533 |
| $2{ }^{\frac{5}{8}}$ | 1.019 | 2.24 | 3.36 | 4.48 | 5.6 | 6.72 | 8.96 |
| $2{ }^{\frac{3}{4}}$ | -1.173 | 2.346 | 3.519 | 4.693 | 5.866 | 7.039 | 9.386 |
| 3 | 1.28 | 2.56 | 3.84 | 5.12 | 6.4 | 7.68 | 10.24 |
| $3 \frac{1}{4}$ | 1.386 | 2.773 | 4.16 | 5.546 | 6.933 | 8.319 | 11.093 |
| $3 \frac{1}{2}$ | 1.493 | 2.986 | 4.48 | 5.973 | 7.466 | 8.95 | 11.946 |
| $3 \frac{3}{4}$ | 1.6 | 3.199 | 4.799 | 6.399 | 7.999 | 9.599 | 12.799 |
| 4 | 1.706 | 3.413 | 5.119 | 6.826 | 8.533 | 10.239 | 13.653 |
| $4 \frac{1}{4}$ | 1.813 | 3.626 | 5.439 | 7.253 | 9.066 | 10.879 | 14.506 |
| $4 \frac{1}{2}$ | 1.92 | 3.84 | 5.76 | 7.68 | 9.6 | 11.52 | 15.36 |
| $4 \frac{3}{4}$ | 2.026 | 4.053 | 6.079 | 8.106 | 10.133 | 12.159 | 16.213 |
| 5 | 2.133 | 4.266 | 6.399 | 8.533 | 10.666 | 12.799 | 17.066 |
| $5 \frac{1}{4}$ | 2.24 | 4.48 | 6.72 | 8.959 | 11.199 | 13.44 | 17.919 |
| $55^{\frac{1}{3}}$ | 2.346 | 4.693 | 7.039 | 9.386 | 11.733 | 14.079 | 18.773 |
| $5_{6}{ }^{\frac{3}{4}}$ | 2.453 | 4.906 | 7.359 | 9.813 | 12.266 | 14.719 | 19.626 |
| 6 | 2.56 | 5.12 | 7.68 | 10.24 | 12.8 | 15.36 | 20.48 |

## Number of Brass Escutcheon Pins in a Pound.





GENUINE RUSSIA SHEET IRON.

|  | SIZE. | Weight per SHEET. | WIRE GAUGE. |
| :---: | :---: | :---: | :---: |
| No. 7.. ............. | 28x56 in. | $\mathrm{C}^{\frac{1}{7}} \mathrm{l} \mathrm{lbs}$. | No. 29 |
| No. 8............... |  | $7{ }_{4}^{1} \mathrm{lbs}$. | No. 28 |
| No. 9 | " | 8 lbs. | No. 27 |
| No. 10. | " | 9 lbs. | No. 26 |
| No. 11. | " | 10 lbs . | No. 25 |
| No. 12. | " | $10 \frac{3}{4} \mathrm{lbs}$. | No. $24 \frac{1}{2}$ |
| No. 13. | , | $11 \frac{3}{4} \mathrm{lbs}$. | No. 24 |
| No. 14 | " | $12 \frac{1}{2} \mathrm{lbs}$. | No. $23 \frac{1}{4}$ |
| No. 15. | ¢ | $13 \frac{1}{2}$ lbs. | No. $22 \frac{3}{8}$ |
| No. 16. |  | $14 \frac{1}{2}$ lbs. | No. $21 \frac{1}{2}$ |
| Average weight per bundle, 240 pounds. |  |  |  |
| american (imitation) russia sheet iron. |  |  |  |
| No. Wire Gauge. | Size sheet | inches. $\left.\right\|^{\text {TV̈t. }}$ | er sheet, liss. |
| 24 25 | 28 x |  | 110 |
| 26 | 28x |  | $9 \frac{3}{4}$ |
| 27 | 28x |  | 91 |

## Tempering Steel.

(Haswell.)
Steel in its hardest state being too brittle for most purposes, the requisite strength and elasticity are obtained by tempering-or letting down the temper as it is termed-which is performed by heating the hardened steel to a certain degree and cooling it quickly. The requisite heat is usually ascertained by the color which the surface of the Steel assumes from the film of oxide thus formed.

The degrees of heat to which these several colors correspond are as follows: At 430, a very faint yellow. SSuitable for hard instruments; as hammerAt 450, a pale straw color. . faces, drills, \&c.
At 470, a full yellow....... \& Forinstruments requiring hard edges without At 490, a brown color...... elasticity;asshears,scissors,turning tools,\&c
At 510, brown, with purple
spots...................... $\{$ For tools, for cutting wood and soft metals; At 530 , purple................... $\left\{\begin{array}{l}\text { such as plane-irons, knives, \&c. }\end{array}\right.$
As 550, dark blue.......... For tools requiring strong edges, without ex-
At 560 , full blue............. $\left\{\begin{array}{l}\text { treme hardness; as cold-chisels, axes, cut- } \\ \text { lery, \&c. }\end{array}\right.$
lery, \&c.
At 600 , grayish blue, verg- FFor spring-temper, which will bend before
ing on black................. breaking ; as Eaws, sword-blades, \&c.
If the steel is heated higher than this, the effect of the hardening process is destroyed.

## It Has Been Stated

That the temperature of furnaces \&c., may be estimated with considerable accuracy by the color of the fire, and that with a little practice the error at very high temperatures will not exceed $90^{\circ}$, or $100^{\circ}$, and the following table coutains the result of observations with an air thermometer :

| C | Temperature, Degrees $\mathbf{F}$ | Color of Fire. | Temperature, degrees $\mathbf{F}$ |
| :---: | :---: | :---: | :---: |
| Red, just visible. | Deg.... 977 | Orange, deep. | ...... 2,010 |
| " dull. | 1,290 | clear | 2,190 |
| "6 cherry, dull | 1,470 | White heat** | 2,370 |
| " 6 full. | . 1,650 | " bright | 2,550 |
| 66 clea | . 1,830 | dazzling | 2,730 |

## Effect of Heat on Various Bodies.

| Degrees | Degrees. |
| :---: | :---: |
| Ammonia boils.... . . . . . . . . . 140 | Iron, bright red in the dark... 752 |
| Ammonia (liquid) freezes..... . -46 | red hot in twilight....... 884 |
| Antimony melts............... 951 | Lead melts |
| Arsenic inelts.................. 365 | Mercury boils ................. 662 |
| Bismath melts.... . . . . . . . . . . 476 | " volatilizes............ 680 |
| Blood (human) heat of........ 98 | " freezes............... -39 |
| "6 "6 freezes........ 25 | Naphtha boils.................. 186 |
| Brandy freez | Petroleum boil |
| Brass melts............. . . . . . . 1, 1,900 | Platinum melts................. . 3,080 |
| Cadmium melts................ 600 | Potassium melts.............. 135 |
| Coal Tar boils................. . 325 | Proof Spirit freezes............ -7 |
| Cold, greatest artificial........ -166 | Saltpetre melts................. 600 |
| " greatest natural......... - 56 | Sea-water freez |
| Common Fire.... ............. 790 | Silver (fine) melts............. 1,250 |
| Copper melts................... 2,548 | Snow and Salt, equal parts. |
| Glass melts. . . . . . . . . . . . . . . . . 2,377 | Spirits of Terpentine freezes. 14 |
| Gold (fine) melts . . . . . . . . . . . 2, 590 | Steel melts................... . . 2,500 |
| Gutta-percha softens.......... 145 | - 's polished, blue............ 580 |
| Heat, cherry red.............. . 1,50u | " straw color..... 460 |
| ${ }_{6} 6$ 6 (Daniel)......... 1,141 | Strong Wiues freeze.......... 20 |
| " brightred............. . . 1,860 | Sulphur melts................. 226 |
| "6 red, visible by day....... 1,077 | SulphAcid(sp.grav1,641)freezes -45 |
| " white..................... 2,900 | Tin melts................... 421 |
| Ice melts.. ................... 32 | Vinous fermentation.....60 to 77 |
| Iron (cast) melts............... . 3,479 | Water in racuo boils.......... 98 |
| 6 (wrought) melts.......... 3,980 | Zinc melts |
| The sign - before the figures indicates that many degrees beiow zero or 0. |  |

## PATENT EYE SASH WEIGHTS

ExTys

TONE.
W. A. Ross \& Brother, 56 Pine St., New York. SEE LIST ON OPPOSITE PAGE.

## 

Lake and Clinton Streets, Chicago, Ill.


Orders Filled at Sight. Send for Circulars and Prices.

## BUILDERS' REFERENCE TABLES.

| Size of Class in Windows. |  |  | Size of Sash and Frame. | Weights. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12 Lights. | 8 Lights. | 4 Lights. |  | $1 \frac{1}{4}$ | $1 \frac{1}{2}$ |
| $8 \times 10$ | $12 \times 10$ | $12 \times 20$ | $2.4 \times 3.10$ | Lbs. 4 | LBS. |
| $8 \times 12$ | $12 \times 12$ | $12 \times 24$ | $2.4 \times 4.6$ | $4 \frac{1}{2}$ | 5 |
| $9 \times 12$ | $13 \frac{1}{2} \times 12$ | $13 \frac{1}{2} \times 24$ | $2.7 \times 4.6$ | $5^{2}$ | $5 \frac{1}{2}$ |
| $9 \times 13$ | $13 \frac{1}{2} \times 13$ | $13 \frac{1}{2} \times 26$ | $2.7 \times 4.10$ | $5 \frac{1}{2}$ | $5 \frac{1}{2}$ |
| $9 \times 14$ | $13 \frac{1}{2} \times 14$ | $13 \frac{1}{2} \times 28$ | $2.7 \times 5.2$ | $5 \frac{1}{2}$ | 6 |
| $9 \times 15$ |  | $13 \frac{1}{2} \times 30$ | $2.7 \times 5.6$ | $5 \frac{1}{2}$ | $6 \frac{1}{2}$ |
| $9 \times 16$ | $13 \frac{1}{2} \times 16$ | $13 \frac{1}{2} \times 32$ | $2.7 \times 5.10$ | 6 | $6 \frac{1}{2}$ |
| $10 \times 12$ | $15 \times 12$ | $15 \times 24$ | $2.10 \times 4.6$ | $5 \frac{1}{2}$ | 6 |
| $10 \times 14$ | $15 \times 14$ | $15 \times 28$ | $2.10 \times 5$ | ${ }^{2}$ | $6 \frac{1}{2}$ |
| $10 \times 15$ | $15 \times 15$ | $15 \times 30$ | $2.10 \times 5.6$ | 6 | $7{ }^{2}$ |
| $10 \times 16$ | $15 \times 16$ | $15 \times 32$ | $2.10 \times 5.10$ | $6 \frac{1}{2}$ | $7 \frac{1}{2}$ |
| 10x18 | $15 \times 18$ | $15 \times 36$ | $2.10 \times 6.6$ | 7 | 8 |
| $10 \times 20$ | $15 \times 20$ | $15 \times 40$ | $2.10 \times 7.2$ | 8 | 9 |
| 11x14 | $16 \frac{1}{2} \times 14$ | $16 \frac{1}{2} \times 28$ | $3.1 \times 5.2$ | 6 | 7 |
| $11 \times 15$ | $16 \frac{1}{2} \times 15$ | $16 \frac{1}{2} \times 30$ | $3.1 \times 5.6$ | $6 \frac{1}{2}$ | $7 \frac{1}{2}$ |
| $11 \times 16$ | $16 \frac{1}{2} \times 16$ | $16 \frac{1}{2} \times 32$ | $3.1 \times 5.10$ | 7 | 8 |
| $11 \times 17$ | $16 \frac{1}{2} \times 17$ | $16 \frac{1}{2} \times 34$ | $3.1 \times 6.2$ | 7 | 8 |
| $11 \times 18$ | $16 \frac{1}{2} \times 18$ | $16 \frac{1}{2} \times 36$ | $3.1 \times 6.6$ | $7 \frac{1}{2}$ | $8 \frac{1}{8}$ |
| $12 \times 14$ | $18 \times 14$ | $18 \times 28$ | $3.4 \times 5.2$ | $6 \frac{1}{2}$ | $7 \frac{1}{2}$ |
| $12 \times 15$ | $18 \times 15$ | $18 \times 30$ | $3.4 \times 5.6$ | 7 | 8 |
| $12 \times 16$ | $18 \times 16$ | $18 \times 32$ | $3.4 \times 5.10$ | $7 \frac{1}{2}$ | $8 \frac{1}{2}$ |
| $12 \times 18$ | $18 \times 18$ | $18 \times 36$ | $3.4 \times 6.6$ |  | $9 \frac{1}{2}$ |
| $12 \times 20$ | $18 \times 20$ | $18 \times 40$ | $3.4 \times 7.2$ |  | $10 \frac{1}{2}$ |
| 12x24 | $18 \times 24$ | $18 \times 48$ | $3.4 \times 8.6$ |  | 12 |

One Hank of Sash Cord will hang 16 Weights. Each Hank Measures 75 feet and weighs about $21-4 \mathrm{lbs}$.

SASH WEIGHTS.-Standard Size List.

| LBS. | Inches diam'r | Inches length | LBS. | Inches diam'r | Inches length | LBS. | Inches diam'r | Inches length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | $1 \frac{1}{8}$ | $8 \frac{1}{4}$ | 9 | $1 \frac{9}{16}$ | 18 | 18 | 17 | 251 |
| 2 $\frac{1}{2}$ | $1 \frac{1}{8}$ | $10^{4}$ | $9 \frac{1}{2}$ | 19 | 191 ${ }^{\frac{1}{2}}$ | 19 | 2 | $24 \frac{1}{2}$ |
| 3 | $1 \frac{3}{16}$ | 11 | 10 | 1 冎 | 19 | 20 | 2 | $25 \frac{1}{2}$ |
| 3 $\frac{1}{2}$ | $1 \frac{5}{16}$ | 11 | O $\frac{1}{2}$ | $1{ }^{5}$ | 193 | 21 | 2 | $27 \frac{1}{2}$ |
| 4 | $1 \frac{5}{16}$ | 12 | 11 | $1{ }^{\frac{5}{8}}$ | $20 \frac{3}{8}$ | 22 | 2 | 28 |
| $4 \frac{1}{2}$ | $1{ }_{1}^{5}$ | 13 | $11 \frac{1}{2}$ | $1 \frac{3}{4}$ | 19 | 23 | 2 | 30 |
| 5 | $1{ }_{1}^{7}{ }^{\frac{7}{6}}$ | 13 | 12 | $1 \frac{3}{4}$ | 20 | 24 | 2 | 31 |
| $5 \frac{1}{2}$ | $1{ }_{1}{ }^{7}$ | 14 | $12 \frac{1}{2}$ | $1 \frac{3}{4}$ | 21 | 25 | 2 | 32 |
| 6 | 1.76 | $14 \frac{1}{2}$ | 13 | $1 \frac{3}{4}$ | 22 | 26 | 2 | 33 |
| $6 \frac{1}{2}$ | $1{ }_{17}^{7}$ | $15 \frac{1}{4}$ | 14 | $1 \frac{3}{4}$ | $23 \frac{1}{2}$ | 27 | 2 | 35 |
| 7 | $1{ }_{1}^{76}$ | $16 \frac{1}{4}$ | 15 |  | 25 | 28 | 2 | 37 |
| $7 \frac{1}{2}$ | $1 \frac{1}{2}$ | 17 | 16 | $1 \frac{1}{8}$ | $23 \frac{1}{4}$ | 29 | 2 | 38 |
| 8 | $1 \frac{1}{8}$ | $17 \frac{3}{4}$ | 17 | $1 \frac{5}{8}$ | $24 \frac{1}{2}$ | 30 | 2 | $39 \frac{1}{2}$ |
| $8 \frac{1}{2}$ | 1.95 | $17 \frac{3}{4}$ |  |  |  |  |  |  |

2-lb. to 20-lb. Patent Eye. 21-1b. to 30-1b. Solid Eye.
Sizes not on List, and Square Weights, half-cent per 1b. extra.


IMPORTERS ENGLISH and FRENCH PLATE GLASS, FRENCH WINDOW GLASS.

FRENCH PICTURE GLASS.
FRENCH CAR GLASS.
ENAMELED QLASS,
GROUND GLASS,
CATHEDRAL GLASS. RUBY, BLUE, GREEN, ORANGE and PURPLE GLASS. SHARRATV \& NEWTH'S ENGLISH GLAZIERS' DIANONDS.
-ALSO-
American Plate Glass. American Window Glass. Floor and Skylight Glass. Embossed and Cut Glass.

All kinds of Glass Cut to any Size and Shapa required. Estimates furnished.
HOLBROOK BROMHETRES, 87 \& 89 Beekman, and 53 \& 55 Cliff Streets, INEW YORTK CITY.

## WINDOW GLASS.

## FRENCH OR AMERICAN.

No. of Lights pbr Box of 50 Feet,

|  <br>  <br>  <br>  <br>  <br>  <br>  N <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

# A.B. \&W.T. WESTERVELT, 102 Chambers Street, 

Corner Church Street,
NEW YORK,

## Muntix

 COPPER WEATHER VANRS AND BANNERETS, NEWEST AND MOST APPROVED DESIGNS.WROUGHT AND CAST IRON RAILINGS, DOOR AND WINDOW GUARDS. PLali and ordamerial Driveway Gates, WIRE WORK of every description for Banks, Oftices, \&c.
Lampswolamp Posts. FOUNTAINS. A Q UARIA. FOUNTAIN JETS.
 Garilan Vasens.
 Chairs andSettees, TABLES. IRON AND BRASS BEDSTEADS. COPPER AND GALTANIZED IRON Licerning rods. CAST IRON
Crestings, Finals, AND Bannerets,
For Houses, Ohurches, Towers and Public Buildings.
Hand and Horse Lawn Mowers and Garien Rollers. GALVANIZED RAILINGS EOR CEMETERY ENCLOSURES. Emblematic Signs for Various Trades. Irou Brass and Nickel Plated Stable Fiitinus,
such as
Guards,
Mangers,
Racks,
Gutters,
Posts,
 Hooks, Tie Rings, Water Troughs, Wood Covered

Brackets, Whip Racks, \&c. \&c.
Special attention given to Architects' Drawings. Illustrated Catalogues furnished to Architects, Builders, and the Trade.
Office \& Warerooms, 102 CHAMBERS ST., cor. Church, New York.

## HOPKINS' HANOY NOTES AND QUERIES.

## ROOFING SLATE.

## GENERAI RULE FOR THE COMPUTATION OF SLATE.

From the length of tho slate take three inches, or as many as the third covers the first; divide the remainder by 2, and multiply the quotient by the width of the slate, and the prodact will be the number of square inches in a single slate. Divide the number of square inches thus procured by 141 , the number of square inches in a square foot, and the quotient will be the number of feet and inches required. A square of slate is what will cover 100 feet square, when properly laid upon the roof.

TABLE OF' SIZES AND NUMBER OT SLATES IN ONE SQUARE.

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $6 \times 12$ | 533 | 9x14 | 291 | 10x18 | 192 | $11 \times 22$ | 137 |
| Tx12 | 457 | 10x14 | 261 | $11 \times 18$ | 174 | $12 \times 22$ | 125 |
| $8 \times 12$ | 400 | $12 \times 14$ | 218 | $12 \times 18$ | 160 | $14 \times 22$ | 108 |
| $9 \times 12$ | 355 | 8x16 | 275 | $14 \times 18$ | 137 | $12 \times 24$ | 114 |
| 10x12 | 320 | 9×16 | 246 | $10 \times 20$ | 169 | $14 \times 24$ | 98 |
| 12x12 | 286 | 10x16 | 821 | $11 \times 20$ | 154 | $16 \times 24$ | 86 |
| $7 \times 14$ | $\therefore 74$ | 12x16 | 185 | 12x20 | 141 | $14 \times 26$ | 89 |
| $8 \times 14$ | 3E7 | 9×18 | 213 | $14 \times 20$ | 121 | $16 \times 26$ | 78 |

The weight of a square of Slate is estimated in a general way (varying according to the thickness of the different makes) at from 600 to 700 lbs . per square.
A square of Slate is 100 superficial feet.
Gauge is distance between the courses of the slates.
Lap is distance which each slate overlaps the slate lengthwise next but one below it, and it varies from 2 to 4 inches. The standard is assumed to be 3 inches.

Margin is width of course exposed or distance between tails of slate.

Pitch of a slate roof should not be less than 1 in height to 4 in breadth.

Length of a slate is taken from nail-hole to tail.
Thickness of slates ranges from $\frac{1}{8}$ to $\frac{5}{26}$ inch.
WEIGET PER SQUARE FOOT.

Weight ......... $1.81 \quad 2.71 \quad 3.625 .43 \quad 7.25 \quad 9.0610 .8714 .5 \mathrm{lbs}$. Weight per cubic foot, 174 pounds.
It requires, on account of laps, an average of nearly $2 \frac{1}{2}$ square feet of slate to make one of slating.


# Number of Slate in any Number of Squares 

CAN BE CALCULATED FROM THE FOLLOWING TABLE.

The left-hand column is size of slate; the figures at the top are the number of squares; the columns of figures are the number of pieces of slate.

|  | $\mathrm{S}^{2}$ | SQ. | SQ. | SQ. | SQ. | SQ. | SQ. | SQ | SQ | SQ | SQ. | SQ. | SQ. | SQ. | SQ. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 43 |  |  |  |  | 428 |  |  |  |  | 857 | 943 | 1029 | 115 | 0 |
| $24 \times 14$ | 49 | 98 | 196 | 294 | 392 | 490 | 588 | 686 | 783 | 881 | 979 | 1077 | 1175 | 1273 | 1371 |
| $24 \times 12$ | 58 | 115 | 229 | 343 | 457 | 571 | 686 | 800 | 914 | 1029 | 1143 | 1257 | 1371 | 1485 | 1600 |
| $22 \times 14$ | 54 | 108 | 217 | 325 | 434 | 542 | 650 | 758 | 866 | 975 | 1083 | 1191 | 1300 | 1408 | 1516 |
| $22 \times 12$ | 63 | 126 | 253 | 379 | 505 | 631 | 758 | 884 | 1011 | 1137 | 1263 | 1389 | 1515 | $16 \pm 2$ | 1768 |
| $22 \times 11$ | 69 | 137 | 276 | 413 | 551 | 689 | 826 | 965 | 1102 | 1240 | 1378 | 1515 | 1653 | 1791 | 1929 |
| 20x14 | 61 | 121 | 242 | 363 | 484 | 605 | 726 | 847 | 968 | 1089 | 1210 | 1331 | 1452 | 57 | 1694 |
| $20 \times 12$ | 71 | 141 | 282 | 424 | 565 | 706 | 847 | 988 | 1129 | 1271 | 1412 | 1552 | 1694 | 83 | 1976 |
| $20 \times 11$ | 77 | 154 | 308 | 462 | 616 | 770 | 924 | 1078 | 1232 | 1386 | 1540 | 1694 | 1848 | 200 | 156 |
| $20 \times 10$ | 85 | 170 | 339 | 508 | 678 | 847 | 1017 | 1186 | 1356 | 1525 | 1694 | 1863 | 2032 | 220 | 2371 |
| 18×12 | 80 | 160 | 320 | 480 | 640 | 800 | 960 | 1120 | 1280 | 1440 | 1600 | 1760 | 1920 | 2080 | 240 |
| 18x10 | 96 | 192 | 384 | 576 | 768 | 960 | 1152 | 1344 | 1536 | 1728 | 1920 | 2112 | 2304 | 2496 | 268 |
| 18x 9 | 107 | 213 | 426 | 640 | 853 | 1066 | 1280 | 1493 | 1706 | 1920 | 2133 | 2346 | 2560 | 2773 | 2986 |
| 10x12 | 93 | 185 | 370 | 554 | 739 | 924 | 1108 | 1293 | 1477 | 1662 | 1847 | 2031 | 2216 | 2400 | 2585 |
| $10 \times 10$ | 111 | 222 | 443 | 664 | 886 | 1107 | 1329 | 1550 | 1772 | 1993 | 2215 | 2436 | 2658 | 2880 | 3101 |
| 10x 9 | 123 | 246 | 492 | 738 | 985 | 1231 | 1477 | 1723 | 1969 | 2215 | 2461 | 2707 | 2953 | 320 | 3446 |
| 10x 8 | 133 | 276 | 554 | 831 | 1108 | 1385 | 1662 | 1938 | 2215 | 2492 | 2769 | 3046 | 3323 | 360 | 3876 |
| 14x14 | 94 | 187 | 374 | 561 | 748 | 935 | 1122 | 1309 | 1496 | 1683 | 1870 | 2057 | 2244 | 2431 | 2618 |
| $14 \times 12$ | 109 | 218 | 437 | 654 | 872 | 1091 | 1310 | 1527 | 1745 | 1963 | 2182 | 2400 | 2618 | 2836 | 3054 |
| $14 \times 10$ | 131 | 262 | 524 | 785 | 1048 | 1309 | 1570 | 1833 | 2094 | 2356 | 2618 | 2880 | 3141 | 2403 | 3665 |
| 14x 9 | 145 | 290 | 581 | 872 | 1163 | 1454 | 1745 | 2036 | 2326 | 2618 | 2909 | 3200 | 3490 | 3781 | 4072 |
| $14 \times 8$ | 164 | 327 | 655 | 982 | 1309 | 1636 | 1964 | 2291 | 2618 | 294 | 3273 | 3600 | 3927 | 4254 | 4581 |
| 14x 7 | 187 | 374 | 748 | 1122 | 1496 | 1870 | 2244 | 2618 | 2992 | 336 | 3740 | 4114 | 4488 | 4862 | 5236 |
| $12 \times 12$ | 134 | 267 | 534 | 800 | 1067 | 1334 | 1600 | 1867 | 2133 | 2400 | 2667 | 2934 | 3200 | 3467 | 3784 |
| $12 \times 10$ | 160 | 320 | 640 | 960 | 1280 | 1600 | 1920 | 2240 | 2559 | 2879 | 3200 | 3520 | 3840 | 4160 | 4480 |
| $12 \times 8$ | 200 | 400 | 800 | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 4000 | 4400 | 4800 | 5200 | 5600 |
| 12x | 229 | 457 | 914 | 1371 | 1828 | 2285 | 2743 | 3200 | 3657 | 4114 | 4571 | 5028 | 5485 | 5942 | 6399 |
| 12x 6 | 267 | 533 | 106 | 1600 |  |  |  |  |  |  | 533 | 58 | 6400. |  | 7437 |

## Standard Rules for Measuring Slate Roofing.

These rules are recognized and followed by roofers and architects wherever slate-roofing is used, and in all standard works on the subject: For plain roof-Measure the length of the roof and multiply by the length of the rafter. For roof with hips, valleys, gables, normersi ETC.-Measure each section through center and multiply length of rafter; and, in addition to the actual surface of roof, measure the length of all hips and valleys by one foot wide. The extra measure on hips and valleys is intended to compensate for extra labor and loss of material in cutting, fitting and laying same. No deduction is made for dormer windows, skylights, chimneys, etc., unless they measure more than four feet square. If more than four feet square and less than eight feet square, deduct onehalf. If more than eight feet square, deduct the whole. If hips are mitred, charge extra. The carpenter should furnish cant strips.

## CLIFPYS R. H. WAGON SPRINGS. 1888 STYLE.

## SHOWING APPLICATION TO BOLSTER.

## PIIOIE 工ISTI:

1000 Lbs. Capacity... $\$ 4.75$
1500 Lbs. Capacity... $\$ 5.00$
2000 Lbs. Capacity... $\$ 6.00 \quad 6000$ Lbs. Capacity... $\$ 10.00$ 8000 Lbs. Capacity. $\qquad$ $\$ 12.00$.

## Cliff's R. H. Wagon Bolster Springs

They are made of Best Crucible Steel.
They are All Complete, ready to drop onto the wagon.
They are Adjustable to any Width of Bolster.
They have the Slow, Easy Motion that is absolutely necessary to carry fruits and produce in perfect condition.
They Will Save 20 Per Cent in wear and tear on wagou and team.
Every Set of Springs will carry its marked capacity. Springs are Warranted Against Detects of material and workmanship.


## TITUS \& BABCOCK,

Manufacturers' Agents, - Rochester, N. Y.

## POWDER AND SAFETY FUSE.

Sporting Powder is packed in 5 sizes of grain running from $F$ (coarsest), FF, FG, FFG, FFFG (finest), the sizes in greatest demand being FG and FFG.

Blasting Powdir. - "A Blasting" is packed in 8 sizes of grain, TP (coarsest), TPG, F, FF, FG, FFG, FFFG, FFFFG (finest), the last size being especislly adapted for use in Granite quarries.
"B Elasting" has 6 sizos of grain, C (coarsest), TP, TPG, F, FF, FFF (finest). It is glazed unless otherwise ordered.

Shipping Powder (extra strength) is packed in six sizes of grain, TPG (coarsest), F, FF, FG, FFG, FFFG (finest).

## SAFETY FUSE

Is of 8 qualities : Hemp, Cotton, Superior Mining, Single-Taped,DoubleTaped, Triple-Taped, Small Gutta Percha, Large Gutta Percha, the qualities in greatest demand being Cotton and Single-Taped.

12 inches of Hemp Fuse will burn out in about 9 seconds.

| 12 | " Cotton Fuse | " | ". | 15 | " |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 12 | Single-Taped Fuse | " | " | 18 | " |

Taped Fuse is made to resist influence of water and severe tamping.
Safety Fuse is packed in barrels, each barrel containing a uniform number of feet, viz.:


## ATLAS POWDER.

Put up in cartridges of either 6 or 8 inches in length, and from $7 / 8$ of an inch to 2 inches in diameter, and packed in $25-1 \mathrm{~b}$., $50-1 \mathrm{~b}$. short and 50 lb. long boxes (the last, for convenience in handling, contain the powder in five $10-1 \mathrm{~b}$. paper bores placed inside of the wond box.)


Taking "Atlas C Powder" as a standard, a single cartridge of that grade will weigh in ounces, according to its diameter and length, as follows:

| Size of Cartridge | $\left\|\begin{array}{c} \text { Weight in Ounces } \\ \text { each Cartridge. } \end{array}\right\|$ | Size of Cartridge. | $\begin{aligned} & \text { Weight in Ounces } \\ & \text { each Cartridge. } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| $7 / 8 \times 6$ | $31 / 3$ | $1 / 8 \times 8$ 1 | 41/4 |
| $11 / 8 \times 6$ | 5\% | $11 / 8 \times 8$ | 67/8 |
| $11 / 4 \times 6$ | 63/4 | $11 / 4 \times 8$ | 8 |
| $11 / 2 \times 6$ | 97/8 | $11 / 8 \times 8$ | 121/3 |
| $13 / 4 \times 6$ | 131/3 | $13 / 4 \times 8$ | 16 |
| $2 \times 6$ | $162 / 3$ | $2 \times 8$ | 20 |

[^7]
## WORKSHOP RECIPES.

## Cement to Resist Fire and Water, and Harden Quickly.

Two parts finely sifted unoxodized iron filings.
One part, perfectly dry, finely powdered loam.
Knead the mixture with strong vinegar into a homogeneous plastic mass, to be used as soon as made.

## To Soften Putty.

To remove old putty from broken windows, dip a small brush in nitromuriatic acid or caustic soda (concentrated lye), and with it annoint or paint over the dry putty that adheres to the broken glase and frames of your windows; after an hours interval, the putty will have become so soft as to be easily removable.

## Painter's Putty.

Spanish whiting, pulverized......
Made into a stiff paste. If not Boiled Oil intended for immediate use, raw oil should be used.
One pound of putty for stopping every 20 yards.

## Glazier's Putty.

Whiting, 70 pounds; boiled oil, 30 pounds; water, 2 gallons. Mix. If too thin add more whiting; if too thick, add more oil.

## Cement for Stopping Joints, Etc.

White lead in oil, mixed mith enough white sand to make it a stiff paste. This grows hard by exposure, and resists heat, cold and water.

## Cement for Leather Belting.

Take of common glue and American isinglass, equal parts; place them in a boiler and add water sufficient to cover the whole. Let it soak 10 hours, then bring it to a boiling heat, and add pure tannin until the whole becomes ropey or appears like the whites of eggs. Apply it warm. Buff the grain off the leather where it is to be cemented; rub the joint surfaces solidly together, let it dry a few hours, and it is ready for practical use; and, if rroperly put together, it will not need riveting, as the cement is nearly of the same nature as the leather itself.

## To Remove Rusty Rolts.

To remove bolts that have become rusted badly, without breakiug them, is quite simple if understood. The best method is to apply kerosene oil liberally, and give time for it to soften the rust before any attempt is made to turn the nut. If, after the rust has softened, it does not start easily with the wrench, give a rap on one corner with a blow of the hammer. A hammer and cold chisel rightiy used will often start a rusted nat that would not yield to the wrench without twistiug off the bolt.

## HIow to Prepare Fence Posts.

A western farmer says that he discoverd many years ago that wood could be made to last longer than iron in the ground. Time and weather, he says, seem to have no effect on it. Posts can be prepared for less than two cents apiece. This is the recipe: Take boiled linseed oil and stir it in palverized charcoal 10 the consistency of paint. Put a coat of this over the timber, añd, he adds, there is not a man that will live to see it rot.
A Practical IA ule for Laying Pipe for Draining Land.


Greatest Fail of Rain is 2 inches per hour $=54303.6$ galls. per acre.

## WORKSHOP RECIPES--CEMENTS FOR IRON.

## To Mend Iron Pots.

Take two parts sulphur, and one part, by weight, of fine black lead; put the sulphur in an old iron pan, holding it over the fire until it begins to melt, then add the lead; stir well until all is melted; then pour out on an iron plate or smooth stone. When cool, break into small pieces. A sufficient quantity of this compound being placed upon the crack of the iron pot to be mended, can be soldered by a hotiron in the same way that a tinsmith solders his sheets. If there is a small hole in the pot, drive a copper rivet in it and then solder it with this cement.

## Cement for Annealing Boxes.

Iron filings, 100 parts; lime milk, 40 ; quartz sand, 50 ; vinegar, 20. These are worked with water into a paste to which may be added, to render the mass more porous, hair, sawdust, etc.

## Iron Cement for Hermetically Closing Stove Doors.

Finest iron filings, 100 parts; sal ammoniac, 10 ; limestone, 10 ; soluble glass solution, 10. These are mixed with water to a thick paste, which is applied at once, and is left to dry slowly before heating.

## Cement for Broken Iron Vessels.

Iron filings, 10 parts; clay, 60 . These are worked with linseed oil into a thick paste, which is applied after some more linseed oil has been added to it, and left to dry slowly.

## Rust Cement for Iron.

Wrought-iron filings, 65 parts; cal ammoniac, 21/2; sulphur (fiour), 11/2; sulphuric_acid, 1. The solid ingredients are mixed dry, sulphuric acid diluted with sufficient water being then added. This cement dries after two or threo days, and unites with the iron, making a very resisting and solid mass.

## Cement for Filling Faults in Castings.

Iron filings, free from rust, 10 parts; sulphur, $1 / 2$ : sal ammoniac, 0.8. These are mixed with water to a thick paste, which is rammed into the "faults." This becomes strong when the iron filings aro rusted. The parts which have to be cemented are treated before the operation with liquid ammonia, so as to be perfectly free from grease,

## Fire-Proof Cement.

(1) Iron filings, 140 parts; hydraulic lime, 20 ; quartz sand, 25 ; sal ammoniac, 3. These are formed into a paste with vinegar, and then applied. This cement is left to dry slowly before heating. (2) Iron filings, 180 parts; lime, 45 ; common salt, 8 . These are worked into a paste with strong viaegar. The cement must be perfectly dry before heated. By heating it becomes stone-hard.

## Iron Cement for High Temperatures.

(1) Iron filings, 20 parts; lime powder, 45 ; borax, 5 ; common salt, 5 ; permanganate of potash, 10. The borax and salts are dissolved in water, and are then mixed with the two first-named ingredients as quickly as possible and used. This cement changes at a white heat to a glassy mass, which is perfectly air-proof. (2) Permanganate, 25 parts; zinc white, 25 ; borax, 5 . These are treated with a solution of soluble glass, and used at once. This cement must be left to dry slowly, and then it will resist the highest temperatures.

## Cement for Gas Retorts.

For cementing earthenware gas retorts, which have to withstand very high temperatures, the following cement can be used: Powdered glass, 5 parts ; chamotte meal, 5 ; powdered borax, 1 . Chamotte meal is obtained by pulverizing broken pieces of gas retorts. This cement is a hard glass which only melts at the highest temperature, and then closes the leaks in the retort. To render the iron retort cover which closes the retort air-tight, a cement is used consisting of schwerspath powder, to which as much soluble glass has been mixed as to obtain a paste of sufficient strength.

## Headquartess for Agricultural Implements.



Copper strip Feed Catters.


Lever Ferd Catters.


Family Cider Mill.


Union Cider Mill.


Clinton Sheller,


Burrall Sheiller.


Champion Barrows.


Wagon Jack.


Store Trucks.


Canal Barrows.


Con Mill.


Hay Rack.


Cultivators.


Presses.

Apex Harrow



Lawn Rollers.

We have the finest and best illustrated Agricul
which we furnish to dealers only, on application
which we furnish to dealers only, on application. Wo pll our Calaguein this country, none, at the very lowest market price. Address

METROPOLITAN AGRICULTURAL WORKS, H. B. GRIFFING,

## Plants or Trees.

## NUMBER TO THE ACRE AT GIVEN DISTANCES.



Customary and Legal Weight of Various Articles in the United States.

|  | lbs. | lbs |  |
| :---: | :---: | :---: | :---: |
| Apples. | . 48 | Onions..................per b | bu. 56 |
|  |  | Peas... |  |
| arley. | 48 | Plastering |  |
| Beans |  | Rape |  |
| ackwh | 48 |  | 56 |
| Broom Corn | 46 | Red Top Seed |  |
| Blue Grass, Kentucky |  | Salt, Coarse |  |
| " English. |  | Salt, Michigan | 56 |
| Bran... |  | Sweet Potatoes |  |
| CanarySeed. |  | Timothy Seed | 45 |
| Castor Beans |  | Turnips. | 55 |
| Clover Seed. | 64 | Wheat | 60 |
| Corn, shelled. |  | Beef and Pork, per bbl., | 200 |
| " on ear |  | Flour, per bbl, net. | 96 |
| Corn Meal. | 50 | White Fish and Trout, per |  |
| Charcoal. |  |  | 00 |
| Coal, Minera |  | Salt, per bb |  |
| Cranberries |  | Lime, |  |
| Dried Peach |  | Hay, well settled, per cubic ft. | $4 \frac{1}{2}$ |
| Flax Seed. |  | Corn, on cob, in bin, |  |
| Hemp Seed. | 44 | Corn, shelled, | 45 |
| Hungarian Grass Seed | 50 | Wheat, |  |
| Irish Potatoes, heap- |  | Oats, | $5 \frac{1}{2}$ |
| ing measure.... | 50 | Potatoes, |  |
| Malt. | 34 | Clay, compact, | 135 |
| Oats |  | Marble | 169 |
| Osage Orang | 33 | Seasoned Beech Wood, per cord 5, | 5,616 |
| Orchard Grass | " 14 | Hickory, | 6,960 |

## HOPKINS' HANDY NOTES AND QUERIES.

## QUANTITY OF SEED REQUIRED

TO PRODUCE A GIVEN NUMBER OF PLANTS AND SOW A GIVEN AMOUNT OF GROUND.


Velocity and Force of the Wind.


## Dimensions of Cylindrical Vessels.

It will be useful for tinners to know how to calculate the contents in gallons of cylindrical vessels. This is easily done by this formula: Square the diameter (in inches and decimal parts of an inch), multiply it by the height, then multiply the product by .0034 for wine gallons, or by .002785 for beer gallons.
'Tinners are of ten called upon to construct a can or other cylindrical vessel to contain a certain number of gallons. The following table, furnished by an experienced tinner, gives the dimensions of cylindrical vessels which cut to advantage from tin or galvanized iron:

| Gallons. | Diameter. | Height. | Gallons. | Diameter. | Height. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $6 \frac{3}{3}$ | $6{ }^{3}$ | 30 | $18{ }^{1}$ | $26 \frac{1}{2}$ |
| 2 | $8 \frac{1}{2}$ | $8{ }^{3}$ | 35 | $18 \frac{1}{2}$ | $30 \frac{1}{2}$ |
| 3 | 9 | $11 \frac{1}{2}$ | 40 | 183 | 34 |
| 4 | $10 \frac{1}{2}$ | $13 \frac{3}{1}$ | 50 | $20 \frac{1}{2}$ | 35 |
| 5 | 111 | 111 $\frac{1}{2}$ | 60 | $22 \frac{1}{2}$ | 38 |
| 6 | $11 \frac{1}{2}$ | $13{ }^{1}$ | 70 | 23 | 40 |
| 10 | $13 \frac{1}{\frac{1}{2}}$ | 1619 | 80 | $24 \frac{1}{2}$ | 40 |
| 15 | $15 \frac{1}{2}$ | 19 | 90 | $24 \frac{1}{2}$ | 45 |
| 20 | 16 | 23 | 100 | 26 | 45 |
| 25 | 18 | 23 |  |  |  |

Table of Dimensions of Various Measures of Capacity.

| Size. | Diameter of Top. | Diameter of Bottom. | Height. |
| :---: | :---: | :---: | :---: |
|  | Inches. | Inches. | Inches. |
| 1 gallon. | $5 \frac{1}{4}$ | $6 \frac{1}{7}$ | ${ }_{8}^{9}$ |
| $1^{\frac{1}{2}}$ quart. | 4 | $4{ }_{4}^{88}$ | 8 |
| 1 gallon. | $4{ }_{4}$ | 7 | $8{ }^{1}$ |
| ${ }_{5}^{\frac{7}{2}} 66$ | $6 \frac{1}{2}$ | 4 | 4 |
| 5 \% 6 | 8 | 111 | 127 |
| 36 | 7 | 11. | $10 \frac{1}{4}$ |
| 26 | 6 | $10 \frac{1}{2}$ | $8{ }_{8}^{7}$ |
| 1 6 | $3{ }^{3}$ | $8 \frac{3}{4}$ | $7{ }_{4}^{3}$ |
| 20 quarts. | $19 \frac{1}{2}$ | 13 | 8 |
| 16 ". | 18 | $11 \frac{1}{4}$ | $6 \frac{1}{4}$ |
| 14 6 | $15^{\frac{1}{4}}$ | $9 \frac{1}{4}$ | $6 \frac{1}{4}$ |
| 10 " | $14 \frac{3}{4}$ | 11 | $4 \frac{1}{81}$ |
| 1 pint. | $2{ }^{\frac{7}{8}}$ | $3 \frac{1}{8}$ | $4 \frac{1}{4}$ |
| $3^{\frac{1}{2}}{ }^{66}$ | $2{ }^{\frac{3}{8}}$ | $2 \frac{7}{8}$ | $3 \frac{1}{8}$ |
| 3 quarts, | $3{ }_{4}^{1}$ | ${ }^{6}$ |  |
| 1 pint. | $4{ }^{4} \frac{1}{4}$ | 34 ${ }^{3}$ | $2^{3}$ |
| $1^{\frac{1}{2}}{ }^{\text {gallon }}$. | 3 ${ }^{\frac{1}{1}}$ | $6 \frac{5}{8}$ <br> $5 \frac{7}{8}$ | ${ }_{5}^{61}$ |
| 1 " | 2 | $4 \frac{1}{4}$ | $4 \frac{1}{8}$ |
| ${ }^{\frac{1}{2}}{ }^{6}$ | $1 \frac{3}{4}$ | $3 \frac{1}{4}$ | $3 \frac{1}{4}$ |
| 2 quarts. | 9 | 6 | $3_{4}^{3}$ |
| 3 pints. | $8 \frac{1}{4}$ | $5 \frac{3}{4}$ | $2{ }^{3}$ |
| 1 pint. | $6 \frac{1}{4}$ | 4 | $2 \frac{3}{4}$ |
| Pie. | 9 | $7 \frac{1}{2}$ | $1 \frac{3}{4}$ |

## Capacity of Boxes.

A box 24 by 16 inches and 28 inches deep will contain 5 bushels. A box 24 by 16 inches and 14 inches deep will contain $2 \frac{1}{2}$ bushels. A box 14 by $23_{\frac{1}{2}}^{5}$ inches and 10 inches deep will contain $1 \frac{1}{2}$ bushels. A box 16 inches square and $8 \frac{2}{\sigma}$ inches deep will contain 1 bushel. A box 16 by $8 \frac{2}{5}$ inches and 8 inches deep will contain $\frac{1}{2}$ bushel. A box 8 inches square and $8 \frac{2}{5}$ inches deep will contain 1 peck. A box 8 by $8 \frac{3}{5}$ inches and 4 inches deep will contain 1 gallon. A bos 8 by 4 inches and $4 \frac{1}{5}$ inches deep will contaiu $\frac{8}{2}$ gallon. A box 4 inches square and $4 \frac{1}{5}$ inches deep will contain 1 quart ${ }^{\circ}$

When you order to get the best, ask for

#  

Best Block Tin Key, Maple Wood Body, Highly Polished, with Leather Lining.

For Sale in every City by the Leading Jobbers in Hardware, Woodenware, Groceries \& Liquor. The "PLERLESS" Faucet is equaled by none, the only standard
 Faucet suitable for Wines, Liquors, Beer, Ale or Vinegar, which will not form verdigris. Every "PEERLESS" Faucet is coated inside with an Impervious patent costing, Which is a positive preventive from cracking or splitting.-Beware of Imitations such as Faucets similar in shape, with Keys made of IEAD, IRON or other INFERIOB METALS, Tinned or Nickeled, which will in every instance form poisonous Metallic corrosion, and are sold for our "PEERLESS" Faucet with Pure Block Tin Key.
Only the Genuine are Stamped in the wood with our trade mark "Maltese Cross" on one side, and on the opposite side with our cld brard with full name.

## Manuaratured by Doin sownirg goin

8, 10 and 12 PEARL STREET, NEWARK, N. J.
Everything in the wood Faucet line. World known John Sommer's I. X. L. Faueet. 1st quality Cork Lined warranted, all labeled with our name, (Red Label).
Send for our new 50 page illustrated and descriptive Calalogue of every thing in the

JOHN SOMMER'S BEST BLOER TIN KEY.' sood Faucet line, and anyone using or selling Faucets ought to have one.


## AMERICAN BULTAINOSAREW CFIEECO.

## DAYTON, OHIO,

MANUFACTURERS OF

## Patewt Revolillig bolt ano Screw cases.

The American Bolt and Screw Case Co. of Dayton, O., are the only manufacturers of these Cases. Many improvements have been added to them, making them now as perfect and complete, as well as ornamental, as could be desired. They are now using irou standards, screwed firmly into an iron hub, in the bottom, which makes them perfectly true and solid. The tops and bottoms are double, with the grain of the wood crossed, glued and screwed together, and braced with iron rods, which bind the whole firmly together; thus making it strong enough to bear three times the weight that can be put into it; and by which means they revolve perfectly true and easy; and they are giving universal satisfaction.

## SEND FOR CIRCULAR.

ALL CASES GUARANTEED.

## Capacity of Cylindrical Cisterns or Tanks,

FOR EACH FOOT OF DEPTH.

| Diameter in feet. | Gallons. | Pounds. | Diameter in feet. | Gallons. | Pounds. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2.0 | 23.5 | 196 | 9.0 | 475.9 | 3,968 |
| 2.5 | 36,7 | 306 | 9.5 | 530.2 | 4,421 |
| 3.0 | 52.9 | 441 | 10.0 | 587.5 | 4,899 |
| 3.5 | 72.0 | 600 | 11.0 | 710.9 | 5,928 |
| 4.0 | 94.0 | 784 | 12.0 | 846.0 | 7,054 |
| 4.5 | 119.0 | 992 | 13.0 | 992.9 | 8,280 |
| 5.0 | 146.9 | 1,225 | 14.0 | 1,151.5 | 9,602 |
| 5.5 | 177.7 | 1,482 | 15.0 | 1,321.9 | 11,023 |
| 6.0 | 211.5 | 1,764 | 20.0 | 2,350.1 | 19,596 |
| 6.5 | 248.2 | 2,070 | 25.0 | 3,672.0 | 30,620 |
| 7.0 | 287.9 | 2,401 | 30.6 | 5,287.7 | 44,093 |
| 7.5 | 330.5 | 2,756 | 35.0 | 7,197.1 | 60.016 |
| 8.0 | 376.0 | 3,135 | 40.0 | 9,400.3 | 78,388 |
| 8.5 | 424.5 | 3,540 | . . | -. | ... |

Rule for Measuring the Capacity of a Circular Cistern.
Multiply the square of the diameter by 7854 , or the square of the circumference by .07958 , in order to find the area of the cistern, then maltiply the area by the depth in inches, and divide the product by 231 . The quotient will equal the number of gallons the cistern will contain.

In measuring cisterns, etc., $31 \frac{1}{2}$ gallons are estimated to one barrel ; 63 gallons to one hogshead.

## Capacity of Cisterns in Barrels ( $31^{\frac{1}{2}}$ Gals.)

Depth 1 foot.

| Diameter. |  | Barrels. |
| :---: | :---: | :---: |
| Feet, | 2 | . 74 |
| " | ${ }^{2 \frac{1}{2}}$ | 1.70 |
| " | $3 \frac{1}{2}$ | 2.28 |
| " | 4 | 2.98 |
| " | $4 \frac{1}{2}$ | 3.77 |
| " | 5 | 4.66 |
| " | $5 \frac{1}{2}$ | 5.64 |
| " | 6 | 6.71 |
| " | ${ }^{6 \frac{1}{2}}$ | 7.88 |
| ". | 7 7 7 | 9.13 10.49 |
| " | $8^{2}$ | 11.93 |

Depth 1 foot.

| Diameter. |  | Barrels. |
| :---: | :---: | :---: |
| Feet, | $8 \frac{1}{2}$ | 13.47 |
| 6 | 9 | 15.11 |
| 6 | $9 \frac{1}{2}$ | 16.81 |
| 66 | 10 | 18.65 |
| 66 | 11 | 22.56 |
| 66 | 12 | 26.85 |
| 66 | 13 | 31.61 |
| 66 | 14 | 36.55 |
| 66 | 15 | 41.96 |
| 6 | 20 | 74.60 |
| 66 | 25 | 116.57 |
| 66 | 30 | 167.86 |

Rule for Measuring the Capacity of a Square Cistern.
Multiply the length in feet by the width in feet, and multiply that by 1.728, then divide by 231. The quotient ill be the number of gallons capacity of one foot in depth.

## SANMPLTS OF

## Siulis imini lancirin Tus.

 Hand BersalNO. 66
With Seven Steel Cutters \$1.00


RULE Trammel Points NO. 99,
Per Set of Three, $\$ 0.50$.
CHISEL GAGGE,
For Blind Nailing, No. 96, WITH STEEL STOCK, \$0.20.


BIT AND SQUARE LEVEL,

No. 66,
Brass Frame and Screw, $\$ 0.30$.

ADJUSTABLE


NO. 72,
Cast Iron Stock,\$2.00.
No. 72 1-2,
With Beading Attachment, $\$ 3.00$.

MIANVIACIUEDESS:

Stanley Rule and Level Co., New Britain, Conn.

## THE TRADE'S FAVORITE STILL AHEAD! 

## The Empire Roaster and Baker

 18 Cliff Street, IVew Yorlz117 N. 2d ST., PHILADELPHIA.powthe name and reputation which has been attasined by Our Superior Malie of Goods is owing to the fiact that we are the only manufacturers who
have wade Ellows exclusively from Best Refined have wade Elbows exclusively from Best Refived
und IRussia Irou. ALL ELBOWS OF Our Manufacture


Bear Red Label " None Genuine Without li."

Seud for Price-List and Sample Duzen.
ASK YOUR JOBBER FOR
New York Elbow Company's Elbows.

## LIBRARY OF CONGRESS

## The New We Put Your Finger Rig




| 100.2922 | 11103.2143 | 2R106.1364 | 3目\|09.05 84 |  |
| :---: | :---: | :---: | :---: | :---: |
| 200.5844 | 1203.5065 | 220 06.1286 | 3209.3506 |  |
| 300.8766 | 1303.7987 | 2706.7208 | 3309.6428 | 4 |
| 401.1688 | 1404.0909 | 2407.0130 | 3¢09.93 51 |  |
| 501.4610 | 1504.3831 | 2507.3052 | 3510.2273 |  |
| 601,7532 | 1004.67 53 | 2607.5974 | 3810 | 4 |
| 702.0455 | 1704.9675 | 27.07.8896 | $37 \mid 10.8117$ | 4 |
| 802.3377 | 1805.2597 | 2808.1818 | 38 |  |
| D02.62 99 | 19,05.55 19 |  |  |  |
| 002.922 | 20,05.84 | 32 |  |  |


| 4111.9805 | 5退14.9026 |
| :---: | :---: |
| 42812.27 27 | 5215.1948 |
| 4812.5649 | 5315.4870 |
| 4212.8571 | 5415.7792 |
| 4513.1493 | 5516.0714 |
| 4613.4415 | 5616.3636 |
| 4713.7338 | 57/16.65 58 |
| 4814.0260 | 5816.9480 |
| (8)14.3182 | 5917.24 02 |
| 114.6104 | $6 \oplus 17.5324$ |

$35,25,20,10,10$ \& $7^{2 / 3} / \mathrm{s}$. $21 / \mathrm{s}$.


The hand points to the net of

If the amount was, sa) $\$ 73.45$, add the net of 45 cents, which the table shows is 13 cente total net $\$ 21.46$.


[^0]:    Entered according to Act of Congress by Henry Hoperns \& Co. in the year 1888 in the Office of the Librarian of Congreas at Washington, D. C.

[^1]:    This is the most valuable work ever issued in the interest of Hardware，Tools and Machinery，and no one，with pride in his vocation，can afford to be withont it．Subscrip－ tions solicited，to be taken either by part or volume，and for all information regarding the same，address

[^2]:     of the full parts of Files most generally used. It will also be found useful to persons who generally want Files of a certain width or thickness, and who may not know the corresponding length of sich Files.

[^3]:    See Copper Sheathing Sheets.

[^4]:    ＊The above weights are theoretically correct，but in practice deviations

[^5]:    ©
    
    
    
    Thickness in Inches．
    
     －
    \％ーか\％ず
    
    
    
    

[^6]:    For STEFL PLATES multiply tabular nambers above (for Size) by 1.01.

[^7]:    Note. - For low r grades, reduce weight of Cartridge; for higher grades increase weight of cartridge.

